题目链接

这种题一看就是dp啊,dp[i][j]表示第i位放j的方案数,转移方程为dp[i][j]=dp[i-1][k]{k<=i||k%i!=0},当然我们可以三层循环来找,但数据显然会超时,那么我们只能在第二层循环中用中间变量记录一下可以省去一层循环,但是为倍数的情况必须要考虑,所以先预处理出所有的倍数,然后dp的过程中减去倍数的情况即可,总体复杂度O(n* k * sqrt(k)。

#include <set>
#include <map>
#include <queue>
#include <stack>
#include <math.h>
#include <bitset>
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#define MAXN 1010100
#define LL long long
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define ll __int64
#define INF 0x7fffffff
#define cs(s) freopen(s,"r",stdin)
#define mem(x) memset(x,0,sizeof(x))
#define PI acos(-1)
#define eps 1e-10
using namespace std;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a/gcd(a,b)*b;}
LL powmod(LL a,LL b,LL MOD){LL ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
//head
const LL mod=1e9+7;
LL dp[11][100003];
vector<LL>p[100001];
LL n,k;
void P(){//预处理倍数
for(int i=1;i<=k;i++){
for(int j=2;1ll*j*i<=k;j++){
p[i].pb(j*i);
}
}
}
LL a[111];
int main(){
ios::sync_with_stdio(false);
cin>>n>>k;
P();
for(int i=1;i<=k;i++)dp[1][i]=1;
for(int i=1;i<=n;i++)dp[i][1]=1;
for(int i=2;i<=n;i++){
LL pr=0;
for(int j=1;j<=k;j++)pr=(0ll+pr+dp[i-1][j])%mod;
LL sum=dp[i-1][1];
for(int j=2;j<=k;j++){
LL mi=pr;
dp[i][j]=(0ll+sum+dp[i-1][j])%mod;
sum=(0ll+sum+dp[i-1][j])%mod;//为dp[i-1][1]到dp[i-1][j]的和
mi-=sum;
for(int x:p[j]){
mi-=dp[i-1][x];//减去倍数
}
dp[i][j]+=mi;
}
}
LL ans=0;
for(int i=1;i<=k;i++)ans=(ans+dp[n][i])%mod;
cout<<ans;
return 0;
}

牛牛与数组 (简单dp)的更多相关文章

  1. 『简单dp测试题解』

    这一次组织了一场\(dp\)的专项考试,出了好几道经典的简单\(dp\)套路题,特开一篇博客写一下题解. Tower(双向dp) Description 信大家都写过数字三角形问题,题目很简单求最大化 ...

  2. 计蒜客-跳跃游戏二 (简单dp)

    题目链接:https://nanti.jisuanke.com/t/20                                         跳跃游戏二 给定一个非负整数数组,假定你的初始 ...

  3. Kattis - bank 【简单DP】

    Kattis - bank [简单DP] Description Oliver is a manager of a bank near KTH and wants to close soon. The ...

  4. 简单dp总结

    ### 简单dp总结 本文是阅读<挑战程序设计第二版>其中关于dp章节所作总结.将简要描述dp的部分知识. 一.dp是什么? dp在计算机专业学科中全称是动态规划(dynamic prog ...

  5. hdu1501 Zipper[简单DP]

    目录 题目地址 题干 代码和解释 参考 题目地址 hdu1501 题干 代码和解释 最优子结构分析:设这三个字符串分别为a.b.c,如果a.b可以组成c,那么c的最后一个字母必定来自a或者b的最后一个 ...

  6. 【POJ - 2533】Longest Ordered Subsequence (最长上升子序列 简单dp)

    Longest Ordered Subsequence 搬中文 Descriptions: 给出一个序列,求出这个序列的最长上升子序列. 序列A的上升子序列B定义如下: B为A的子序列 B为严格递增序 ...

  7. Chapter3数学与简单DP

    Chapter 3 数学与简单DP 上取整: a / b //下取整 (a + b - 1) / b //上取整 +++ 数学 1.买不到的数目 1205 //如果不知道公式,可以暴搜打表找规律(★) ...

  8. 4.15 每周作业 —— 简单DP

    免费馅饼 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submissi ...

  9. 最大连续子序列(简单DP实现)

    最大连续子序列 最大连续子数列和一道很经典的算法问题,给定一个数列,其中可能有正数也可能有负数,我们的任务是找出其中连续的一个子数列(不允许空序列),使它们的和尽可能大.我们一起用多种方式,逐步优化解 ...

随机推荐

  1. Qt License 解读

    对于桌面和移动平台应用 官方说明如下 Qt for Application Development lets you create applications for desktop and mobil ...

  2. Fabric CA环境的集成

    我们前面关于Fabric的所有文章中用到的例子都没有CA Server,都是由cryptogen这个工具根据crypto-config.yaml而生成的.但是在实际生产环境中,我们肯定不能这么做,我们 ...

  3. springBoot中使用定时任务

    简单示例 导入依赖 springBoot已经默认集成了定时任务的依赖,只需要引入基本的依赖就可以使用定时任务. <parent> <groupId>org.springfram ...

  4. Text Mining and Analytics WEEK1

    第一周目标 解释自然语言处理中的一些基本概念 解释不同的方式来表示文本数据 解释的两种基本的词联想以及如何从文本数据挖掘聚合关系 尝试回答以下问题 为了理解一个自然语言句子,计算机必须做些什么? 什么 ...

  5. 必须掌握的MySQL优化指南

    当 MySQL 单表记录数过大时,增删改查性能都会急剧下降,本文会提供一些优化参考,大家可以参考以下步骤来优化. 单表优化 除非单表数据未来会一直不断上涨,否则不要一开始就考虑拆分,拆分会带来逻辑.部 ...

  6. CentOS自定义快捷键,以终端为例

    和Ubuntu不同的是,CentOS默认情况下没有Terminal的快捷键.因此,用户需要自定义. 具体操作: 一.打开设置,搜索keyboard 二.点击+号定义快捷键 名称随意填,查询终端程序所在 ...

  7. 关于学习springboot和springcloud的很不错的教程

    近日,逐步开始学习了springboot和springcloud.本以为很简单,但是随着学习的深入,发现其中有很多地方都需要认真揣摩.凡事都需要循序渐进,有一个好的开端就是成功的一半.于是在浩瀚的网络 ...

  8. 使用FaceNet 图像相识度对比

    1. 模型结构:

  9. Linux(Ubuntu)使用日记(三)------git安装使用

    1. 安装 首先,确认你的系统是否已安装git,可以通过git指令进行查看,如果没有,在命令行模式下输入sudo apt-get install git命令进行安装. 2.  配置 git confi ...

  10. BEX5下增加sessionStorage监听器实现页面间数据刷新

    场景: A页面修改了数据,希望B页面能进行及时的同步前端数据,但是假如当A页面修改保存后,去获得B页面的model对象,会增加开发的难度,同时A页面也不能重复利用:假如在B页面的激活事件里面写刷新代码 ...