题目链接

这种题一看就是dp啊,dp[i][j]表示第i位放j的方案数,转移方程为dp[i][j]=dp[i-1][k]{k<=i||k%i!=0},当然我们可以三层循环来找,但数据显然会超时,那么我们只能在第二层循环中用中间变量记录一下可以省去一层循环,但是为倍数的情况必须要考虑,所以先预处理出所有的倍数,然后dp的过程中减去倍数的情况即可,总体复杂度O(n* k * sqrt(k)。

#include <set>
#include <map>
#include <queue>
#include <stack>
#include <math.h>
#include <bitset>
#include <vector>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#define MAXN 1010100
#define LL long long
#define fi first
#define se second
#define mp make_pair
#define pb push_back
#define ll __int64
#define INF 0x7fffffff
#define cs(s) freopen(s,"r",stdin)
#define mem(x) memset(x,0,sizeof(x))
#define PI acos(-1)
#define eps 1e-10
using namespace std;
int gcd(int a,int b){return b?gcd(b,a%b):a;}
int lcm(int a,int b){return a/gcd(a,b)*b;}
LL powmod(LL a,LL b,LL MOD){LL ans=1;while(b){if(b%2)ans=ans*a%MOD;a=a*a%MOD;b/=2;}return ans;}
//head
const LL mod=1e9+7;
LL dp[11][100003];
vector<LL>p[100001];
LL n,k;
void P(){//预处理倍数
for(int i=1;i<=k;i++){
for(int j=2;1ll*j*i<=k;j++){
p[i].pb(j*i);
}
}
}
LL a[111];
int main(){
ios::sync_with_stdio(false);
cin>>n>>k;
P();
for(int i=1;i<=k;i++)dp[1][i]=1;
for(int i=1;i<=n;i++)dp[i][1]=1;
for(int i=2;i<=n;i++){
LL pr=0;
for(int j=1;j<=k;j++)pr=(0ll+pr+dp[i-1][j])%mod;
LL sum=dp[i-1][1];
for(int j=2;j<=k;j++){
LL mi=pr;
dp[i][j]=(0ll+sum+dp[i-1][j])%mod;
sum=(0ll+sum+dp[i-1][j])%mod;//为dp[i-1][1]到dp[i-1][j]的和
mi-=sum;
for(int x:p[j]){
mi-=dp[i-1][x];//减去倍数
}
dp[i][j]+=mi;
}
}
LL ans=0;
for(int i=1;i<=k;i++)ans=(ans+dp[n][i])%mod;
cout<<ans;
return 0;
}

牛牛与数组 (简单dp)的更多相关文章

  1. 『简单dp测试题解』

    这一次组织了一场\(dp\)的专项考试,出了好几道经典的简单\(dp\)套路题,特开一篇博客写一下题解. Tower(双向dp) Description 信大家都写过数字三角形问题,题目很简单求最大化 ...

  2. 计蒜客-跳跃游戏二 (简单dp)

    题目链接:https://nanti.jisuanke.com/t/20                                         跳跃游戏二 给定一个非负整数数组,假定你的初始 ...

  3. Kattis - bank 【简单DP】

    Kattis - bank [简单DP] Description Oliver is a manager of a bank near KTH and wants to close soon. The ...

  4. 简单dp总结

    ### 简单dp总结 本文是阅读<挑战程序设计第二版>其中关于dp章节所作总结.将简要描述dp的部分知识. 一.dp是什么? dp在计算机专业学科中全称是动态规划(dynamic prog ...

  5. hdu1501 Zipper[简单DP]

    目录 题目地址 题干 代码和解释 参考 题目地址 hdu1501 题干 代码和解释 最优子结构分析:设这三个字符串分别为a.b.c,如果a.b可以组成c,那么c的最后一个字母必定来自a或者b的最后一个 ...

  6. 【POJ - 2533】Longest Ordered Subsequence (最长上升子序列 简单dp)

    Longest Ordered Subsequence 搬中文 Descriptions: 给出一个序列,求出这个序列的最长上升子序列. 序列A的上升子序列B定义如下: B为A的子序列 B为严格递增序 ...

  7. Chapter3数学与简单DP

    Chapter 3 数学与简单DP 上取整: a / b //下取整 (a + b - 1) / b //上取整 +++ 数学 1.买不到的数目 1205 //如果不知道公式,可以暴搜打表找规律(★) ...

  8. 4.15 每周作业 —— 简单DP

    免费馅饼 Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/32768K (Java/Other) Total Submissi ...

  9. 最大连续子序列(简单DP实现)

    最大连续子序列 最大连续子数列和一道很经典的算法问题,给定一个数列,其中可能有正数也可能有负数,我们的任务是找出其中连续的一个子数列(不允许空序列),使它们的和尽可能大.我们一起用多种方式,逐步优化解 ...

随机推荐

  1. slice()和splice()区别

    1.slice(start,end):方法可从已有数组中返回选定的元素,返回一个新数组,包含从start到end(不包含该元素)的数组元素. 注意:该方法不会改变原数组,而是返回一个子数组,如果想删除 ...

  2. 字符串匹配KMP算法详解

    1. 引言 以前看过很多次KMP算法,一直觉得很有用,但都没有搞明白,一方面是网上很少有比较详细的通俗易懂的讲解,另一方面也怪自己没有沉下心来研究.最近在leetcode上又遇见字符串匹配的题目,以此 ...

  3. HashMap 与 HashSet 联系

    HashMap实现 Map接口 HashSet实现Collection接口 HashSet底层是HashMap  好的 记住这个就可以了 HashSet只存放key, value:   private ...

  4. 基本环境安装: Centos7+Java+Hadoop+Spark+HBase+ES+Azkaban

    1.  安装VM14的方法在 人工智能标签中的<跨平台踩的大坑有提到> 2. CentOS分区设置: /boot:1024M,标准分区格式创建. swap:4096M,标准分区格式创建. ...

  5. vertical-align和text-align属性实现垂直水平居中

    HTML: <div class="box"> <div class="content"> <span class="s ...

  6. Unable to preventDefault inside passive event listener

    最近做项目经常在 chrome 的控制台看到如下提示: Unable to preventDefault inside passive event listener due to target bei ...

  7. monkey日志管理

    日志管理作用 Monkey日志管理是Monkey测试中非常重要的一个环节,通过日志管理分析,可以获取当前测试对象在测试过程中是否会发生异常,以及发生的概率,同时还可以获取对应的错误信息,帮助开发定位和 ...

  8. GC Tools

    GC Tools There are multiple ways to enable the GC log: specifying either of the flags -verbose:gc or ...

  9. [模板] 匈牙利算法&&二分图最小字典序匹配

    匈牙利算法 简介 匈牙利算法是一种求二分图最大匹配的算法. 时间复杂度: 邻接表/前向星: \(O(n * m)\), 邻接矩阵: \(O(n^3)\). 空间复杂度: 邻接表/前向星: \(O(n ...

  10. apache Storm 学习笔记

    Storm流之FieldGrouping字段分组: https://blog.csdn.net/Simon_09010817/article/details/80092080