To perform object detection using ImageAI, all you need to do is

  1. Install Python on your computer system
  2. Install ImageAI and its dependencies

3. Download the Object Detection model file

4. Run the sample codes (which is as few as 10 lines)

Now let’s get started.

1) Download and install Python 3 from official Python Language website

https://python.org

2) Install the following dependencies via pip:

i. Tensorflow

pip install tensorflow

ii. Numpy

pip install numpy

iii. SciPy

pip install scipy

iv. OpenCV

pip install opencv-python

v. Pillow

pip install pillow

vi. Matplotlib

pip install matplotlib

vii. H5py

pip install h5py

viii. Keras

pip install keras

ix. ImageAI

pip installhttps://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.1/imageai-2.0.1-py3-none-any.whl

3) Download the RetinaNet model file that will be used for object detection via this link.

Great. Now that you have installed the dependencies, you are ready to write your first object detection code. Create a Python file and give it a name (For example, FirstDetection.py), and then write the code below into it. Copy the RetinaNet model file and the image you want to detect to the folder that contains the python file.

FirstDetection.py

 
from imageai.Detection import ObjectDetection
import os execution_path = os.getcwd() detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg")) for eachObject in detections:
print(eachObject["name"] + " : " + eachObject["percentage_probability"] )

  

Then run the code and wait while the results prints in the console. Once the result is printed to the console, go to the folder in which your FirstDetection.py is and you will find a new image saved. Take a look at a 2 image samples below and the new images saved after detection.

Before Detection:

 

Image Credit: alzheimers.co.uk

 

Image Credit: Wikicommons

After Detection:

 

Console result for above image:

person : 55.8402955532074

person : 53.21805477142334

person : 69.25139427185059

person : 76.41745209693909

bicycle : 80.30363917350769

person : 83.58567953109741

person : 89.06581997871399

truck : 63.10953497886658

person : 69.82483863830566

person : 77.11606621742249

bus : 98.00949096679688

truck : 84.02870297431946

car : 71.98476791381836

 

Console result for above image:

person : 71.10445499420166

person : 59.28672552108765

person : 59.61582064628601

person : 75.86382627487183

motorcycle : 60.1050078868866

bus : 99.39600229263306

car : 74.05484318733215

person : 67.31776595115662

person : 63.53200078010559

person : 78.2265305519104

person : 62.880998849868774

person : 72.93365597724915

person : 60.01397967338562

person : 81.05944991111755

motorcycle : 50.591760873794556

motorcycle : 58.719027042388916

person : 71.69321775436401

bicycle : 91.86570048332214

motorcycle : 85.38855314254761

Now let us explain how the 10-line code works.

 
from imageai.Detection import ObjectDetection
import os execution_path = os.getcwd()

  

In the above 3 lines, we imported the ImageAI object detection class in the first line, imported the python os class in the second line and defined a variable to hold the path to the folder where our python file, RetinaNet model file and images are in the third line.

 
detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"))

  

In the 5 lines of code above, we defined our object detection class in the first line, set the model type to RetinaNet in the second line, set the model path to the path of our RetinaNet model in the third line, load the model into the object detection class in the fourth line, then we called the detection function and parsed in the input image path and the output image path in the fifth line.

 
for eachObject in detections:
print(eachObject["name"] + " : " + eachObject["percentage_probability"] )

  

In the above 2 lines of code, we iterate over all the results returned by the detector.detectObjectsFromImage function in the first line, then print out the name and percentage probability of the model on each object detected in the image in the second line.

ImageAI supports many powerful customization of the object detection process. One of it is the ability to extract the image of each object detected in the image. By simply parsing the extra parameter extract_detected_objects=True into the detectObjectsFromImagefunction as seen below, the object detection class will create a folder for the image objects, extract each image, save each to the new folder created and return an extra array that contains the path to each of the images.

 
detections, extracted_images = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"), extract_detected_objects=True)

  

Object Detection with 10 lines of code - Image AI的更多相关文章

  1. 论文阅读笔记四十六:Feature Selective Anchor-Free Module for Single-Shot Object Detection(CVPR2019)

    论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以结合特征金字塔嵌入到单阶段检测器中. ...

  2. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  3. 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...

  4. 论文阅读笔记五十一:CenterNet: Keypoint Triplets for Object Detection(CVPR2019)

    论文链接:https://arxiv.org/abs/1904.08189 github:https://github.com/Duankaiwen/CenterNet 摘要 目标检测中,基于关键点的 ...

  5. 论文阅读笔记四十八:Bounding Box Regression with Uncertainty for Accurate Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1809.08545.pdf github:https://github.com/yihui-he/KL-Loss 摘要 大规模的目标检测数据集在 ...

  6. object detection[NMS]

    非极大抑制,是在对象检测中用的较为频繁的方法,当在一个对象区域,框出了很多框,那么如下图: 上图来自这里 目的就是为了在这些框中找到最适合的那个框.有以下几种方式: 1 nms 2 soft-nms ...

  7. 论文阅读笔记五十六:(ExtremeNet)Bottom-up Object Detection by Grouping Extreme and Center Points(CVPR2019)

    论文原址:https://arxiv.org/abs/1901.08043 github: https://github.com/xingyizhou/ExtremeNet 摘要 本文利用一个关键点检 ...

  8. 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 2.Programming assignments:Car detection with YOLOv2

    Autonomous driving - Car detection Welcome to your week 3 programming assignment. You will learn abo ...

  9. YOLO object detection with OpenCV

    Click here to download the source code to this post. In this tutorial, you’ll learn how to use the Y ...

随机推荐

  1. ARM与FPGA通过spi通信设计1.spi基础知识

    SPI(Serial Peripheral Interface--串行外设接口)总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息.SPI总线可直接与各个厂家生产 ...

  2. 小记 xian80 坐标转换 wgs84

    转坐标这个问题是个老生常谈的话题了. 昨天遇到同事求助将 xian80的平面坐标转换到2000下. 想了一下,因为暂时还没有现成的2000的dwg数据可用,只能暂时以wgs84的为准了,然而有个问题, ...

  3. Android 修改包名,导致安装错误

    一.app运行安装时出错 [安装时出错]: [百度翻译] 安装失败的消息未能敲定会议:install_failed_invalid_apk:/数据/应用程序/ vmdl292154713.tmp/9_ ...

  4. docker与虚拟机有何不同

    docker与虚拟机有何不同 Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的 Linux 机器上,也可以实现虚拟化. 容器技术有 ...

  5. 操作系统:修改VirtualBox for Mac的虚拟硬盘大小

    我安装的是Mac版的VirtualBox,不能从GUI上修改硬盘大小,但是实在是大小不够用了. 百度后得知,可以用命令行修改. 1.打开终端,输入sudo su,取得管理员权限 $ sudo su P ...

  6. spring学习总结——装配Bean学习四(导入和混合配置)

    情景:在典型的Spring应用中,我们可能会同时使用自动化和显式配置(JavaConfig)或者XML配置,幸好在Spring中,这些配置方案都不是互斥的.你尽可以将JavaConfig的组件扫描和自 ...

  7. SQL学习笔记---常用命令

    常用命令 变量 1.声明 declare @变量名 类型,… 2.赋值 1.同时赋值多个变量(可以结合查询) select @变量名=表达式1,表达式2 2.单个赋值(推荐) set @变量名=表达式 ...

  8. ES6使用的一些方法

    查找数组中符合条件的所有记录 var list=[ {id:1,name:"张三"}, {id:2,name:"李四"}, {id:3,name:"王 ...

  9. Python 序列化模块(json,pickle,shelve)

    json模块 JSON (JavaScript Object Notation):是一个轻量级的数据交换格式模块,受javascript对象文本语法启发,但不属于JavaScript的子集. 常用方法 ...

  10. oracle nvl2函数

    nvl2(v1, v2, v3) 定义:如果v1为空,返回v3: 不为空,返回v2 nvl2要求v2,v3的类型一致,不一致会发生类型转换.问题:最终返回值类型是v2的类型还是v3的类型? 看题目:n ...