To perform object detection using ImageAI, all you need to do is

  1. Install Python on your computer system
  2. Install ImageAI and its dependencies

3. Download the Object Detection model file

4. Run the sample codes (which is as few as 10 lines)

Now let’s get started.

1) Download and install Python 3 from official Python Language website

https://python.org

2) Install the following dependencies via pip:

i. Tensorflow

pip install tensorflow

ii. Numpy

pip install numpy

iii. SciPy

pip install scipy

iv. OpenCV

pip install opencv-python

v. Pillow

pip install pillow

vi. Matplotlib

pip install matplotlib

vii. H5py

pip install h5py

viii. Keras

pip install keras

ix. ImageAI

pip installhttps://github.com/OlafenwaMoses/ImageAI/releases/download/2.0.1/imageai-2.0.1-py3-none-any.whl

3) Download the RetinaNet model file that will be used for object detection via this link.

Great. Now that you have installed the dependencies, you are ready to write your first object detection code. Create a Python file and give it a name (For example, FirstDetection.py), and then write the code below into it. Copy the RetinaNet model file and the image you want to detect to the folder that contains the python file.

FirstDetection.py

 
from imageai.Detection import ObjectDetection
import os execution_path = os.getcwd() detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg")) for eachObject in detections:
print(eachObject["name"] + " : " + eachObject["percentage_probability"] )

  

Then run the code and wait while the results prints in the console. Once the result is printed to the console, go to the folder in which your FirstDetection.py is and you will find a new image saved. Take a look at a 2 image samples below and the new images saved after detection.

Before Detection:

 

Image Credit: alzheimers.co.uk

 

Image Credit: Wikicommons

After Detection:

 

Console result for above image:

person : 55.8402955532074

person : 53.21805477142334

person : 69.25139427185059

person : 76.41745209693909

bicycle : 80.30363917350769

person : 83.58567953109741

person : 89.06581997871399

truck : 63.10953497886658

person : 69.82483863830566

person : 77.11606621742249

bus : 98.00949096679688

truck : 84.02870297431946

car : 71.98476791381836

 

Console result for above image:

person : 71.10445499420166

person : 59.28672552108765

person : 59.61582064628601

person : 75.86382627487183

motorcycle : 60.1050078868866

bus : 99.39600229263306

car : 74.05484318733215

person : 67.31776595115662

person : 63.53200078010559

person : 78.2265305519104

person : 62.880998849868774

person : 72.93365597724915

person : 60.01397967338562

person : 81.05944991111755

motorcycle : 50.591760873794556

motorcycle : 58.719027042388916

person : 71.69321775436401

bicycle : 91.86570048332214

motorcycle : 85.38855314254761

Now let us explain how the 10-line code works.

 
from imageai.Detection import ObjectDetection
import os execution_path = os.getcwd()

  

In the above 3 lines, we imported the ImageAI object detection class in the first line, imported the python os class in the second line and defined a variable to hold the path to the folder where our python file, RetinaNet model file and images are in the third line.

 
detector = ObjectDetection()
detector.setModelTypeAsRetinaNet()
detector.setModelPath( os.path.join(execution_path , "resnet50_coco_best_v2.0.1.h5"))
detector.loadModel()
detections = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"))

  

In the 5 lines of code above, we defined our object detection class in the first line, set the model type to RetinaNet in the second line, set the model path to the path of our RetinaNet model in the third line, load the model into the object detection class in the fourth line, then we called the detection function and parsed in the input image path and the output image path in the fifth line.

 
for eachObject in detections:
print(eachObject["name"] + " : " + eachObject["percentage_probability"] )

  

In the above 2 lines of code, we iterate over all the results returned by the detector.detectObjectsFromImage function in the first line, then print out the name and percentage probability of the model on each object detected in the image in the second line.

ImageAI supports many powerful customization of the object detection process. One of it is the ability to extract the image of each object detected in the image. By simply parsing the extra parameter extract_detected_objects=True into the detectObjectsFromImagefunction as seen below, the object detection class will create a folder for the image objects, extract each image, save each to the new folder created and return an extra array that contains the path to each of the images.

 
detections, extracted_images = detector.detectObjectsFromImage(input_image=os.path.join(execution_path , "image.jpg"), output_image_path=os.path.join(execution_path , "imagenew.jpg"), extract_detected_objects=True)

  

Object Detection with 10 lines of code - Image AI的更多相关文章

  1. 论文阅读笔记四十六:Feature Selective Anchor-Free Module for Single-Shot Object Detection(CVPR2019)

    论文原址:https://arxiv.org/abs/1903.00621 摘要 本文提出了基于无anchor机制的特征选择模块,是一个简单高效的单阶段组件,其可以结合特征金字塔嵌入到单阶段检测器中. ...

  2. (转)Awesome Object Detection

    Awesome Object Detection 2018-08-10 09:30:40 This blog is copied from: https://github.com/amusi/awes ...

  3. 论文阅读笔记五十二:CornerNet-Lite: Efficient Keypoint Based Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1904.08900.pdf github:https://github.com/princeton-vl/CornerNet-Lite 摘要 基 ...

  4. 论文阅读笔记五十一:CenterNet: Keypoint Triplets for Object Detection(CVPR2019)

    论文链接:https://arxiv.org/abs/1904.08189 github:https://github.com/Duankaiwen/CenterNet 摘要 目标检测中,基于关键点的 ...

  5. 论文阅读笔记四十八:Bounding Box Regression with Uncertainty for Accurate Object Detection(CVPR2019)

    论文原址:https://arxiv.org/pdf/1809.08545.pdf github:https://github.com/yihui-he/KL-Loss 摘要 大规模的目标检测数据集在 ...

  6. object detection[NMS]

    非极大抑制,是在对象检测中用的较为频繁的方法,当在一个对象区域,框出了很多框,那么如下图: 上图来自这里 目的就是为了在这些框中找到最适合的那个框.有以下几种方式: 1 nms 2 soft-nms ...

  7. 论文阅读笔记五十六:(ExtremeNet)Bottom-up Object Detection by Grouping Extreme and Center Points(CVPR2019)

    论文原址:https://arxiv.org/abs/1901.08043 github: https://github.com/xingyizhou/ExtremeNet 摘要 本文利用一个关键点检 ...

  8. 课程四(Convolutional Neural Networks),第三 周(Object detection) —— 2.Programming assignments:Car detection with YOLOv2

    Autonomous driving - Car detection Welcome to your week 3 programming assignment. You will learn abo ...

  9. YOLO object detection with OpenCV

    Click here to download the source code to this post. In this tutorial, you’ll learn how to use the Y ...

随机推荐

  1. Spring Cloud Eureka 常用配置及说明

    配置参数 默认值 说明 服务注册中心配置 Bean类:org.springframework.cloud.netflix.eureka.server.EurekaServerConfigBean eu ...

  2. 详解原生JS回到顶部

    第一次知道可以用超链接(锚点)实现回到顶部的时候我是很震惊的,想着原来可以这么简单啊!但是作为一个正在学习JS的小白,不能就这么轻易止步,所以查资料自己整了一个JS返回顶部. HTML代码: ? 1 ...

  3. Selenium自动化-调用Mysql数据库

    上几篇博客发布了几篇Selenium入门知识和进阶, 现在附上如何 从数据库中取值 能够逐行取值,并且返回二维数组 import java.io.FileInputStream; import jav ...

  4. html iframe高度自适应

    想到的一种办法是,在父页面里获取子页面的高度,在父页面onlod里把获取到子页面的高度赋值给父页面iframe标签,不过这种方法感觉不是很好,因为浏览器兼容性不好,获取不到高度 这种方法有两种写法 & ...

  5. 环境配置(pycharm+virtualenv+git+github等)

    本文转载自https://blog.csdn.net/xiaogeldx/article/details/87315081 铺垫 数据表示方式 - 计算机使用二进制作为自己的机器语言也就是数据的表示方 ...

  6. 商汤科技汤晓鸥:其实不存在AI行业,唯一存在的是“AI+“行业

    https://mp.weixin.qq.com/s/bU-TFh8lBAF5L0JrWEGgUQ 9 月 17 日,2018 世界人工智能大会在上海召开,在上午主论坛大会上,商汤科技联合创始人汤晓鸥 ...

  7. 小米Max 2获取ROOT超级权限的经验

    小米Max 2有么好方法开通了root权限?大家都了解,安卓手机有root权限,如果手机开通了root相关权限,能够实现更完美的功能,打比方大家企业的营销部门的同事,使用某些营销工具都需要在root权 ...

  8. C语言检测指定文件是否存在的代码

    内容之余,将做工程过程中比较常用的一些内容片段珍藏起来,下面资料是关于C语言检测指定文件是否存在的内容,希望能对小伙伴们有所用. #include <stdbool.h> #include ...

  9. Netty学习笔记(五) 使用Netty构建静态网页服务器

    昨天在继续完善基于Netty构建的聊天室系统的过程中,发现了一个有意思的知识点,特此拿来做一个简单的静态网页服务器,好好的玩一玩Netty. 但是不管怎么说利用netty实现各种功能的流程都是类似的 ...

  10. access denied for user 'root'@'localhost'(using password:YES) FOR WINDOWS

    以windows为例: mysql5.5 1. 关闭正在运行的MySQL服务. 2. 打开DOS窗口,转到mysql\bin目录. 3. 输入mysqld --skip-grant-tables 回车 ...