1. HBase读写的方式概况

主要分为:

  1. 纯Java API读写HBase的方式;
  2. Spark读写HBase的方式;
  3. Flink读写HBase的方式;
  4. HBase通过Phoenix读写的方式;

第一种方式是HBase自身提供的比较原始的高效操作方式,而第二、第三则分别是Spark、Flink集成HBase的方式,最后一种是第三方插件Phoenix集成的JDBC方式,Phoenix集成的JDBC操作方式也能在Spark、Flink中调用。

注意:

这里我们使用HBase2.1.2版本,spark2.4版本,scala-2.12版本,以下代码都是基于该版本开发的。

2. Spark上读写HBase

Spark上读写HBase主要分为新旧两种API,另外还有批量插入HBase的,通过Phoenix操作HBase的。

2.1 spark读写HBase的新旧API

2.1.1 spark写数据到HBase

使用旧版本saveAsHadoopDataset保存数据到HBase上。

/**
* saveAsHadoopDataset
*/
def writeToHBase(): Unit ={
// 屏蔽不必要的日志显示在终端上
Logger.getLogger("org.apache.spark").setLevel(Level.WARN) /* spark2.0以前的写法
val conf = new SparkConf().setAppName("SparkToHBase").setMaster("local")
val sc = new SparkContext(conf)
*/
val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local[4]").getOrCreate()
val sc = sparkSession.sparkContext val tableName = "test" //创建HBase配置
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201") //设置zookeeper集群,也可以通过将hbase-site.xml导入classpath,但是建议在程序里这样设置
hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181") //设置zookeeper连接端口,默认2181
hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tableName) //初始化job,设置输出格式,TableOutputFormat 是 org.apache.hadoop.hbase.mapred 包下的
val jobConf = new JobConf(hbaseConf)
jobConf.setOutputFormat(classOf[TableOutputFormat]) val dataRDD = sc.makeRDD(Array("12,jack,16", "11,Lucy,15", "15,mike,17", "13,Lily,14")) val data = dataRDD.map{ item =>
val Array(key, name, age) = item.split(",")
val rowKey = key.reverse
val put = new Put(Bytes.toBytes(rowKey))
/*一个Put对象就是一行记录,在构造方法中指定主键
* 所有插入的数据 须用 org.apache.hadoop.hbase.util.Bytes.toBytes 转换
* Put.addColumn 方法接收三个参数:列族,列名,数据*/
put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(name))
put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(age))
(new ImmutableBytesWritable(), put)
}
//保存到HBase表
data.saveAsHadoopDataset(jobConf)
sparkSession.stop()
}

使用新版本saveAsNewAPIHadoopDataset保存数据到HBase上

a.txt文件内容为:

100,hello,20
101,nice,24
102,beautiful,26
/**
* saveAsNewAPIHadoopDataset
*/
def writeToHBaseNewAPI(): Unit ={
// 屏蔽不必要的日志显示在终端上
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local[4]").getOrCreate()
val sc = sparkSession.sparkContext val tableName = "test"
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201")
hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181")
hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableOutputFormat.OUTPUT_TABLE, tableName) val jobConf = new JobConf(hbaseConf)
//设置job的输出格式
val job = Job.getInstance(jobConf)
job.setOutputKeyClass(classOf[ImmutableBytesWritable])
job.setOutputValueClass(classOf[Result])
job.setOutputFormatClass(classOf[org.apache.hadoop.hbase.mapreduce.TableOutputFormat[ImmutableBytesWritable]]) val input = sc.textFile("v2120/a.txt") val data = input.map{item =>
val Array(key, name, age) = item.split(",")
val rowKey = key.reverse
val put = new Put(Bytes.toBytes(rowKey))
put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(name))
put.addColumn(Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(age))
(new ImmutableBytesWritable, put)
}
//保存到HBase表
data.saveAsNewAPIHadoopDataset(job.getConfiguration)
sparkSession.stop()
}

2.1.2 spark从HBase读取数据

使用newAPIHadoopRDD从hbase中读取数据,可以通过scan过滤数据

/**
* scan
*/
def readFromHBaseWithHBaseNewAPIScan(): Unit ={
//屏蔽不必要的日志显示在终端上
Logger.getLogger("org.apache.spark").setLevel(Level.WARN)
val sparkSession = SparkSession.builder().appName("SparkToHBase").master("local").getOrCreate()
val sc = sparkSession.sparkContext val tableName = "test"
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201")
hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181")
hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableInputFormat.INPUT_TABLE, tableName) val scan = new Scan()
scan.addFamily(Bytes.toBytes("cf1"))
val proto = ProtobufUtil.toScan(scan)
val scanToString = new String(Base64.getEncoder.encode(proto.toByteArray))
hbaseConf.set(org.apache.hadoop.hbase.mapreduce.TableInputFormat.SCAN, scanToString) //读取数据并转化成rdd TableInputFormat是org.apache.hadoop.hbase.mapreduce包下的
val hbaseRDD = sc.newAPIHadoopRDD(hbaseConf, classOf[org.apache.hadoop.hbase.mapreduce.TableInputFormat], classOf[ImmutableBytesWritable], classOf[Result]) val dataRDD = hbaseRDD
.map(x => x._2)
.map{result =>
(result.getRow, result.getValue(Bytes.toBytes("cf1"), Bytes.toBytes("name")), result.getValue(Bytes.toBytes("cf1"), Bytes.toBytes("age")))
}.map(row => (new String(row._1), new String(row._2), new String(row._3)))
.collect()
.foreach(r => (println("rowKey:"+r._1 + ", name:" + r._2 + ", age:" + r._3)))
}

2.2 spark利用BulkLoad往HBase批量插入数据

BulkLoad原理是先利用mapreduce在hdfs上生成相应的HFlie文件,然后再把HFile文件导入到HBase中,以此来达到高效批量插入数据。

/**
* 批量插入 多列
*/
def insertWithBulkLoadWithMulti(): Unit ={ val sparkSession = SparkSession.builder().appName("insertWithBulkLoad").master("local[4]").getOrCreate()
val sc = sparkSession.sparkContext val tableName = "test"
val hbaseConf = HBaseConfiguration.create()
hbaseConf.set(HConstants.ZOOKEEPER_QUORUM, "192.168.187.201")
hbaseConf.set(HConstants.ZOOKEEPER_CLIENT_PORT, "2181")
hbaseConf.set(TableOutputFormat.OUTPUT_TABLE, tableName) val conn = ConnectionFactory.createConnection(hbaseConf)
val admin = conn.getAdmin
val table = conn.getTable(TableName.valueOf(tableName)) val job = Job.getInstance(hbaseConf)
//设置job的输出格式
job.setMapOutputKeyClass(classOf[ImmutableBytesWritable])
job.setMapOutputValueClass(classOf[KeyValue])
job.setOutputFormatClass(classOf[HFileOutputFormat2])
HFileOutputFormat2.configureIncrementalLoad(job, table, conn.getRegionLocator(TableName.valueOf(tableName))) val rdd = sc.textFile("v2120/a.txt")
.map(_.split(","))
.map(x => (DigestUtils.md5Hex(x(0)).substring(0, 3) + x(0), x(1), x(2)))
.sortBy(_._1)
.flatMap(x =>
{
val listBuffer = new ListBuffer[(ImmutableBytesWritable, KeyValue)]
val kv1: KeyValue = new KeyValue(Bytes.toBytes(x._1), Bytes.toBytes("cf1"), Bytes.toBytes("name"), Bytes.toBytes(x._2 + ""))
val kv2: KeyValue = new KeyValue(Bytes.toBytes(x._1), Bytes.toBytes("cf1"), Bytes.toBytes("age"), Bytes.toBytes(x._3 + ""))
listBuffer.append((new ImmutableBytesWritable, kv2))
listBuffer.append((new ImmutableBytesWritable, kv1))
listBuffer
}
)
//多列的排序,要按照列名字母表大小来 isFileExist("hdfs://node1:9000/test", sc) rdd.saveAsNewAPIHadoopFile("hdfs://node1:9000/test", classOf[ImmutableBytesWritable], classOf[KeyValue], classOf[HFileOutputFormat2], job.getConfiguration)
val bulkLoader = new LoadIncrementalHFiles(hbaseConf)
bulkLoader.doBulkLoad(new Path("hdfs://node1:9000/test"), admin, table, conn.getRegionLocator(TableName.valueOf(tableName)))
} /**
* 判断hdfs上文件是否存在,存在则删除
*/
def isFileExist(filePath: String, sc: SparkContext): Unit ={
val output = new Path(filePath)
val hdfs = FileSystem.get(new URI(filePath), new Configuration)
if (hdfs.exists(output)){
hdfs.delete(output, true)
}
}

2.3 spark利用Phoenix往HBase读写数据

利用Phoenix,就如同msyql等关系型数据库的写法,需要写jdbc

def readFromHBaseWithPhoenix: Unit ={
//屏蔽不必要的日志显示在终端上
Logger.getLogger("org.apache.spark").setLevel(Level.WARN) val sparkSession = SparkSession.builder().appName("SparkHBaseDataFrame").master("local[4]").getOrCreate() //表小写,需要加双引号,否则报错
val dbTable = "\"test\"" //spark 读取 phoenix 返回 DataFrame的第一种方式
val rdf = sparkSession.read
.format("jdbc")
.option("driver", "org.apache.phoenix.jdbc.PhoenixDriver")
.option("url", "jdbc:phoenix:192.168.187.201:2181")
.option("dbtable", dbTable)
.load() val rdfList = rdf.collect()
for (i <- rdfList){
println(i.getString(0) + " " + i.getString(1) + " " + i.getString(2))
}
rdf.printSchema() //spark 读取 phoenix 返回 DataFrame的第二种方式
val df = sparkSession.read
.format("org.apache.phoenix.spark")
.options(Map("table" -> dbTable, "zkUrl" -> "192.168.187.201:2181"))
.load()
df.printSchema()
val dfList = df.collect()
for (i <- dfList){
println(i.getString(0) + " " + i.getString(1) + " " + i.getString(2))
}
//spark DataFrame 写入 phoenix,需要先建好表
/*df.write
.format("org.apache.phoenix.spark")
.mode(SaveMode.Overwrite)
.options(Map("table" -> "PHOENIXTESTCOPY", "zkUrl" -> "jdbc:phoenix:192.168.187.201:2181"))
.save()
*/
sparkSession.stop()
}

3. 总结

HBase连接的几种方式(一)java篇 可以查看纯Java API读写HBase

HBase读写的几种方式(三)flink篇 可以查看flink读写HBase

【github地址】

https://github.com/SwordfallYeung/HBaseDemo

【参考资料】

https://my.oschina.net/uchihamadara/blog/2032481

https://www.cnblogs.com/simple-focus/p/6879971.html

https://www.cnblogs.com/MOBIN/p/5559575.html

https://blog.csdn.net/Suubyy/article/details/80892023

https://www.jianshu.com/p/b09283b14d84

https://www.jianshu.com/p/8e3fdf70dc06

https://www.cnblogs.com/wumingcong/p/6044038.html

https://blog.csdn.net/zhuyu_deng/article/details/43192271

https://www.jianshu.com/p/4c908e419b60

https://blog.csdn.net/Colton_Null/article/details/83387995

https://www.jianshu.com/p/b09283b14d84

https://cloud.tencent.com/developer/article/1189464

https://blog.bcmeng.com/post/hbase-bulkload.html Hive数据源使用的HDFS集群和HBase表使用的HDFS集群不是同一个集群的做法

HBase读写的几种方式(二)spark篇的更多相关文章

  1. 【转帖】HBase读写的几种方式(二)spark篇

    HBase读写的几种方式(二)spark篇 https://www.cnblogs.com/swordfall/p/10517177.html 分类: HBase undefined 1. HBase ...

  2. HBase读写的几种方式(一)java篇

    1.HBase读写的方式概况 主要分为: 纯Java API读写HBase的方式: Spark读写HBase的方式: Flink读写HBase的方式: HBase通过Phoenix读写的方式: 第一种 ...

  3. HBase读写的几种方式(三)flink篇

    1. HBase连接的方式概况 主要分为: 纯Java API读写HBase的方式: Spark读写HBase的方式: Flink读写HBase的方式: HBase通过Phoenix读写的方式: 第一 ...

  4. java文件读写的两种方式

    今天搞了下java文件的读写,自己也总结了一下,但是不全,只有两种方式,先直接看代码: public static void main(String[] args) throws IOExceptio ...

  5. Hive映射HBase表的几种方式

    1.Hive内部表,语句如下 CREATE TABLE ods.s01_buyer_calllogs_info_ts( key string comment "hbase rowkey&qu ...

  6. vba txt读写的几种方式

    四种方式写txt 1.这种写出来的是ANSI格式的txt Dim TextExportFile As String TextExportFile = ThisWorkbook.Path & & ...

  7. Scala和Java二种方式实战Spark Streaming开发

    一.Java方式开发 1.开发前准备:假定您以搭建好了Spark集群. 2.开发环境采用eclipse maven工程,需要添加Spark Streaming依赖. 3.Spark streaming ...

  8. Hbase split的三种方式和split的过程

    在Hbase中split是一个很重要的功能,Hbase是通过把数据分配到一定数量的region来达到负载均衡的.一个table会被分配到一个或多个region中,这些region会被分配到一个或者多个 ...

  9. .net学习笔记--文件读写的几种方式

    在.net中有很多有用的类库来读写硬盘上的文件 一般比较常用的有: File:1.什么时候使用:当读写件大小不大,同时可以一次性进行读写操作的时候使用         2.不同的方式可以读写文件类型不 ...

随机推荐

  1. [20190423]简单测试latch nowilling等待模式.txt

    [20190423]简单测试latch nowilling等待模式.txt --//我对这个问题的理解就是如果参数willing=0,表示无法获取该latch,直接退出,再寻找类似的latch.--/ ...

  2. Surging微服务的注意事项

    做个记录 1.Service的方法必须是异步方法 这个是同事发现的,非异步方法Swagger会用不了 2.仓储层不能用接口 这个是自己做的,根据同事的例子,本来好好的,想着在仓储层给加个接口,然后用接 ...

  3. 「技巧」如何快速安装 Sketch 插件

    Sketch拥有强大丰富的插件,但是这些插件天各一方,四处查找下载地址非常麻烦.这里提供一个技巧,通过一个入口可以安装各种插件,基本涵盖了市面上所有靠谱的插件. 准备 Sketch54 Runner ...

  4. XMind 8 Pro 破解

    1.补丁下载地址 链接:https://pan.baidu.com/s/146qcwkvOGCAneIXabSZSUA    提取码:wygs 2.安装 XMind 8 Pro, 运行 3. 去除检查 ...

  5. SQL AVG 函数

    定义和用法 AVG 函数返回数值列的平均值.NULL 值不包括在计算中. SQL AVG() 语法 SELECT AVG(column_name) FROM table_name SQL AVG() ...

  6. url 的正则表达式:path-to-regexp

    概述 该工具库用来处理 url 中地址与参数,能够很方便得到我们想要的数据. js 中有 RegExp 方法做正则表达式校验,而 path-to-regexp 可以看成是 url 字符串的正则表达式. ...

  7. html中的meta标签是什么?有哪些属性?

    meta标签介绍 meta标签是HTML语言head区域的一个辅助性标签,常用于定义页面的说明,关键字,最后修改的日期和其他的元数据.这些元数据将服务于浏览器,搜索引擎和其他网络服务. meta标签的 ...

  8. python open 函数的读写追加

  9. Photoshop快速给美女人像换头发

    今天给大家带来的教程是应用PS来抠出人物图片的发丝和修改头发的颜色. OK开始今天的教程 1.将素材文件拖拽进PS,CTRL+J复制一层. 2.应用快速选择工具大致的将头发部分选区出来,不需要太过仔细 ...

  10. jmeter学习记录--04--Beanshell

    一.什么是Bean Shell BeanShell是一种完全符合Java语法规范的脚本语言,并且又拥有自己的一些语法和方法;BeanShell是一种松散类型的脚本语言(这点和JS类似); BeanSh ...