P2774 方格取数问题

emm........仔细一看,这不是最大权闭合子图的题吗!

取一个点$(x,y)$,限制条件是同时取$(x,y+1),(x,y-1),(x+1,y),(x-1,y)$,只不过权值取负而已

于是我们把图分为黑点和白点,同颜色点之间不相邻,不同颜色的点相邻(如将$(x+y)%2==1$的点记为黑点)

假装把白点的权值都看成负的

记$link(p,q,val)$为$p$向$q$连一条$val$的边(包括反向边)

蓝后根据最大权闭合子图的套路

对于黑点$p$与相邻的白点$q$

$link(S,p,val_p)$

$link(p,q,inf)$

$link(q,T,val_q)$($val_q$不取负

蓝后就可以愉快地跑最小割辣

#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define N 100005
#define inf 1000000000
const int d1[]={,,-,};
const int d2[]={,,,-};
int n,m,d[N],cur[N],tot,S,T; bool vis[N];
queue <int> h;
int cnt=,hd[N],nxt[N],ed[N],poi[N],val[N];
inline void adde(int x,int y,int v){
nxt[ed[x]]=++cnt, hd[x]=hd[x]?hd[x]:cnt,
ed[x]=cnt, poi[cnt]=y, val[cnt]=v;
}
inline void link(int x,int y,int v){adde(x,y,v),adde(y,x,);}
inline int id(int x,int y){return (x-)*m+y;}
bool bfs(){
memset(vis,,sizeof(vis));
h.push(S); vis[S]=;
while(!h.empty()){
int x=h.front(); h.pop();
for(int i=hd[x];i;i=nxt[i]){
int to=poi[i];
if(!vis[to]&&val[i]>)
vis[to]=,d[to]=d[x]+,h.push(to);
}
}return vis[T];
}
int dfs(int x,int a){
if(x==T||a==) return a;
int F=,f;
for(int &i=cur[x];i;i=nxt[i]){
int to=poi[i];
if(d[to]==d[x]+&&(f=dfs(to,min(a,val[i])))>)
a-=f,F+=f,val[i]-=f,val[i^]+=f;
if(!a) break;
}return F;
}
int dinic(){
int re=;
while(bfs()){
for(int i=;i<=T;++i) cur[i]=hd[i];
re+=dfs(S,inf);
}return re;
}
void draw(int x,int y){
int p=id(x,y),w;
scanf("%d",&w); tot+=w;
if((x+y)&){//不要重复连边
link(S,p,w);
for(int i=;i<;++i){
int r1=x+d1[i],r2=y+d2[i];
if(r1>&&r1<=n&&r2>&&r2<=m)
link(p,id(r1,r2),inf);
}
}else link(p,T,w);
}
int main(){
scanf("%d%d",&n,&m);
S=n*m+; T=S+;
for(int i=;i<=n;++i)
for(int j=;j<=m;++j)
draw(i,j);
printf("%d",tot-dinic());
return ;
}

P2774 方格取数问题(网络流)的更多相关文章

  1. P2774 方格取数问题 网络流重温

    P2774 方格取数问题 这个题目之前写过一次,现在重温还是感觉有点难,可能之前没有理解透彻. 这个题目要求取一定数量的数,并且这些数在方格里面不能相邻,问取完数之后和最大是多少. 这个很好的用了网络 ...

  2. P2774 方格取数问题 网络流

    题目: P2774 方格取数问题 题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  3. P2774 方格取数问题(最小割)

    P2774 方格取数问题 一看题目便知是网络流,但由于无法建图.... 题目直说禁止那些条件,这导致我们直接建图做不到,既然如此,我们这是就要逆向思维,他禁止那些边,我们就连那些边. 我们将棋盘染色, ...

  4. 洛谷 P2774 方格取数问题 解题报告

    P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...

  5. P2774 方格取数问题 网络最大流 割

    P2774 方格取数问题:https://www.luogu.org/problemnew/show/P2774 题意: 给定一个矩阵,取出不相邻的数字,使得数字的和最大. 思路: 可以把方格分成两个 ...

  6. P2774 方格取数(网络流)

    https://www.luogu.com.cn/problem/P2774 在一个有 m×n 个方格的棋盘中,每个方格中有一个正整数. 现要从方格中取数,使任意2个数所在方格没有公共边,且取出的数的 ...

  7. P2774 方格取数问题

    题目背景 none! 题目描述 在一个有 m*n 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大.试设计一个满足要求的取数算法.对于 ...

  8. CODEVS_1227 方格取数2 网络流 最小费用流 拆点

    原题链接:http://codevs.cn/problem/1227/ 题目描述 Description 给出一个n*n的矩阵,每一格有一个非负整数Aij,(Aij <= 1000)现在从(1, ...

  9. [洛谷P2774]方格取数问题

    题目大意:给你一个$n\times m$的方格,要求你从中选择一些数,其中没有相邻两个数,使得最后和最大 题解:网络流,最小割,发现相邻的两个点不可以同时选择,进行黑白染色,原点向黑点连一条容量为点权 ...

随机推荐

  1. 架构.Net 到 Linux

    nginx + .net core + mysql + radis + rabbitmq

  2. PDF的水印怎么去掉

    很多朋友私下都有问过PDF去除水印的方法,现在在网上下载一些PDF电子书,几乎页面内都会有水印的,而且有的水印还带有超链接,稍微不注意就会点开进入别的页面内,不仅影响了阅读效果还带给读者负面影响,那如 ...

  3. VUE-009-页面打开时初始化配置项内容

    网页开发过程中,尤其是在表单开发过程中,不可避免的会有各种各样的基础数据需要展示,供用户使用.例如,大家在办理信用卡时,经常需要填写各种表单数据,其中:性别(男.女).学历(高中及以下.大专.本科.研 ...

  4. 深入剖析虚拟DOM提升性能(Vue,React);

    I.原始渲染方式(直接操作DOM): 1.state数据: 2.JSX模板: 3.数据 + 模板 相结合,生成真实的DOM来显示: 4.state发生改变: 5.数据 + 模板结合,生成真实的DOM来 ...

  5. centos修改时区并同步时间

    查看服务器时间及所在时区 [root@localhost ~]# date -R Fri, 07 Dec 2018 04:38:28 -0500 修改时区 先使用 tzselect 根据提示选择所在地 ...

  6. df=df.reset_index(drop=True)

    df=df.reset_index(drop=True) ============ df = pd.read_csv('./train_file/train.csv').dropna()df_test ...

  7. canal mysql slave

    [mysqld] log-bin=mysql-bin #添加这一行就ok binlog-format=ROW #选择row模式 server_id=1 #配置mysql replaction需要定义, ...

  8. 外贸建站之图片预加载JS代码分享

    外贸建站之图片预加载JS代码分享 function preloadimg() { setTimeout(function() { new Image().src = "images/2017 ...

  9. Notification web 桌面消息推送

    var NotificationHandler = { isNotificationSupported: 'Notification' in window, isPermissionGranted: ...

  10. VS调试SQL Server存储过程

    1.打开VS,视图-->SQL Server对象资源管理器.(我用的是VS2012) 2.添加链接,连接到数据库. 3.选择要调试的存储过程,右键,选择调试过程或者执行过程. 4.填写存储过程所 ...