Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
Motivation:
The lack of transparency of the deep learning models creates key barriers to establishing trusts to the model or effectively troubleshooting classification errors
Common methods on non-security applications:
forward propagation / back propagation / under a blackbox setting
the basic idea is to approximate the local decision boundary using a linear model to infer the important features.
Insights:
A mixture regression model : can approximate both linear and non-linear decision boundaries
Fused Lasso: a panalty term commonly used for capturing frature dependency.
By adding fused lasso to the learning process, the mixture regression model can take features as a group and thus capture the dependency between adjacent features.
Evaluations:
classifying PDF malware: trained on 10000 PDF files
detecting the function start to reverse-engineer binary code.
Innovation:
Under a black-box setting :
Give an input data instance x and a classifier such as an RNN, identify a small set of features that have key contributions to the classification of x.
Paper Reading——LEMNA:Explaining Deep Learning based Security Applications的更多相关文章
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
随机推荐
- JUC--闭锁 CountDownLatch
CountDownLatch是一个同步辅助类,在完成一组正在其他线程中执行的操作之前,允许一个或者多个线程一直等待. 闭锁可以延迟线程的进度直到其到达终止状态,可以确保某些活动知道其他活动都完成才继续 ...
- springboot接口返回封装与异常控制
首先,返回有两个状态,status和code status标识response的状态,有2个值:0成功,-1服务错误. code跟业务有关,可以有各种数值,99999服务未知异常,10000参数异常, ...
- layui table 内容为select隐藏问题
<style> .layui-table-cell,.layui-form,.layui-table-box,.layui-table-body{ overflow: visible; } ...
- unity 使用RotateAround的使用注意
1.对于一个固定的点,围绕它进行旋转.需要注意区分世界坐标还是本地坐标 RotateAround(GameObject.Find("Cave").transform.positio ...
- Java的慢和稳
对Java的了解还有待进一步提升,也没有做太多实践工作.只是把脑袋当成电脑,把Java放在里边不停地转,观察它的线路.得到的总体印象加上书本参考,认为Java的应用场景是慢和稳. 学编程语言总会接触到 ...
- python之可变长参数
参数组:*args,**kwargs 实参有按位置和按关键字两种形式定义,*args和**kwargs 位置参数:按照从左到右的顺序定义的参数 位置形参:必选参数 位置实参:按照位置给形参传值 关键字 ...
- crontab和at任务
crontab周期任务 名称解释: cron来源于希腊语 chronos(χρόνος),原意是时间.(引用自维基百科) tab全称是table,表 常用参数: -e 编辑crontab文件 -l 显 ...
- jQuery之cookie操作
Cookies 定义:让网站服务器把少量数据储存到客户端的硬盘或内存,从客户端的硬盘读取数据的一种技术: 下载与引入:jquery.cookie.js基于jquery:先引入jquery,再引入:jq ...
- Nginx+IIS+asp.net mvc 实现负载均衡示例
一.Nginx官网 http://nginx.org/ 二.下载并安装Nginx 下载地址:http://nginx.org/en/download.html 启动Nginx,启动成功的话可以在任务管 ...
- WordPress 文章点赞
Installation 上传 wp-zan目录 到 /wp-content/plugins/ 目录 在后台插件菜单激活该插件 添加 <?php wp_zan();?> 到需要的位置 De ...