Paper Reading——LEMNA:Explaining Deep Learning based Security Applications
Motivation:
The lack of transparency of the deep learning models creates key barriers to establishing trusts to the model or effectively troubleshooting classification errors
Common methods on non-security applications:
forward propagation / back propagation / under a blackbox setting
the basic idea is to approximate the local decision boundary using a linear model to infer the important features.
Insights:
A mixture regression model : can approximate both linear and non-linear decision boundaries
Fused Lasso: a panalty term commonly used for capturing frature dependency.
By adding fused lasso to the learning process, the mixture regression model can take features as a group and thus capture the dependency between adjacent features.
Evaluations:
classifying PDF malware: trained on 10000 PDF files
detecting the function start to reverse-engineer binary code.
Innovation:
Under a black-box setting :
Give an input data instance x and a classifier such as an RNN, identify a small set of features that have key contributions to the classification of x.
Paper Reading——LEMNA:Explaining Deep Learning based Security Applications的更多相关文章
- 【RS】Deep Learning based Recommender System: A Survey and New Perspectives - 基于深度学习的推荐系统:调查与新视角
[论文标题]Deep Learning based Recommender System: A Survey and New Perspectives ( ACM Computing Surveys ...
- 论文笔记: Deep Learning based Recommender System: A Survey and New Perspectives
(聊两句,突然记起来以前一个学长说的看论文要能够把论文的亮点挖掘出来,合理的进行概括23333) 传统的推荐系统方法获取的user-item关系并不能获取其中非线性以及非平凡的信息,获取非线性以及非平 ...
- Predicting effects of noncoding variants with deep learning–based sequence model | 基于深度学习的序列模型预测非编码区变异的影响
Predicting effects of noncoding variants with deep learning–based sequence model PDF Interpreting no ...
- 论文翻译:2021_Towards model compression for deep learning based speech enhancement
论文地址:面向基于深度学习的语音增强模型压缩 论文代码:没开源,鼓励大家去向作者要呀,作者是中国人,在语音增强领域 深耕多年 引用格式:Tan K, Wang D L. Towards model c ...
- 个性探测综述阅读笔记——Recent trends in deep learning based personality detection
目录 abstract 1. introduction 1.1 个性衡量方法 1.2 应用前景 1.3 伦理道德 2. Related works 3. Baseline methods 3.1 文本 ...
- Paper Reading - Sequence to Sequence Learning with Neural Networks ( NIPS 2014 )
Link of the Paper: https://arxiv.org/pdf/1409.3215.pdf Main Points: Encoder-Decoder Model: Input seq ...
- 机器学习(Machine Learning)&深度学习(Deep Learning)资料【转】
转自:机器学习(Machine Learning)&深度学习(Deep Learning)资料 <Brief History of Machine Learning> 介绍:这是一 ...
- 机器学习(Machine Learning)与深度学习(Deep Learning)资料汇总
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.D ...
- What are some good books/papers for learning deep learning?
What's the most effective way to get started with deep learning? 29 Answers Yoshua Bengio, ...
随机推荐
- python学习之re (?P...)通过关键字获取组以及( P=name)
和其他的RE表达式一样,但是匹配的子串可以通过group的名字 name来获取.即 result.group('name') (提示,字符串数字都是常量,所以关键字都可以被视为整型(hash结果) ...
- 十 LVS 负载均衡
回顾nginx 反向代理负载均衡 负载均衡的妙用 负载均衡(Load Balance)集群提供了一种廉价.有效.透明的方法, 来扩展网络设备和服务器的负载.带宽.增加吞吐量.加强网络数据处理能力. 提 ...
- python输入一行字符,判断不同字符数量
输入一行字符,判断不同字符的数量, 分别用for循环和while循环完成 for循环 运用了字符串方法, isupper()判断是否为大写字母 islower()判断是否为小写字母 isdigit() ...
- Python判断输入字符类型
"""从键盘上输入 一个字符,判断其字符类型.""" while True: char = input("请输入需要判断的字符:& ...
- 方法总结:如何实现html页面自动刷新
使用场景: 1. 页面需要定时刷新,实时加载数据,需要实时查看监控数据(H5中的WebSocket和SSE可以实现局部刷新) 2. 一定时间之后跳转到指定页面(登录注册之类) 3. 前端开发使用伪数据 ...
- centos 下的 clamav 安装使用
1.下载 www.clamav.net #官方网站wget https://www.clamav.net/downloads/production/clamav-0.101.2.tar.gz 2.安装 ...
- SSM框架:解决后台传数据到前台中文乱码问题,使用@ResponseBody返回json 中文乱码
解决方法一:@RequestMapping(value="/getphone",produces = "text/plain;charset=utf-8") / ...
- org.springframework.web.context.ContextLoaderListener 解决方案
tomcat启动项目报错,没找到这个类 我直接下了一个spring-web-4.3.8.RELEASE.jar 的 jar 包方到web-inf目录下.问题解决. 补充: 如果在检查了项目 jar 环 ...
- jquery的选择器——[作为学习备用]
1,转载:https://www.cnblogs.com/onlys/articles/jQuery.html jQuery 的选择器可谓之强大无比,这里简单地总结一下常用的元素查找方法 $(&quo ...
- 改进SQL Server 性能 - 索引碎片重建
我们先来看一个用户表上的索引碎片情况: DBCC SHOWCONTIG scanning 'Lead' table...Table: 'Lead' (1422628111); index ID: 1, ...