Index Settings 重要索引配置

Index level settings can be set per-index. Settings may be:

1 static 静态索引配置

They can only be set at index creation time or on a closed index.

只能在创建索引时设置或者在closed状态的索引上设置;

index.number_of_shards

The number of primary shards that an index should have. Defaults to 5. This setting can only be set at index creation time. It cannot be changed on a closed index. Note: the number of shards are limited to 1024 per index.

2 dynamic 动态索引配置

They can be changed on a live index using the update-index-settings API.

可以在索引存在时通过api修改;

index.number_of_replicas

The number of replicas each primary shard has. Defaults to 1.

index.refresh_interval

How often to perform a refresh operation, which makes recent changes to the index visible to search. Defaults to 1s. Can be set to -1 to disable refresh.

index.blocks.read_only

Set to true to make the index and index metadata read only, false to allow writes and metadata changes.

index.blocks.read

Set to true to disable read operations against the index.

index.blocks.write

Set to true to disable data write operations against the index. Unlike read_only, this setting does not affect metadata. For instance, you can close an index with a write block, but not an index with a read_only block.

index.merge.scheduler.max_thread_count

The maximum number of threads on a single shard that may be merging at once. Defaults to Math.max(1, Math.min(4, Runtime.getRuntime().availableProcessors() / 2)) which works well for a good solid-state-disk (SSD). If your index is on spinning platter drives instead, decrease this to 1.

index.translog.durability

Whether or not to fsync and commit the translog after every index, delete, update, or bulk request. This setting accepts the following parameters:

request: (default) fsync and commit after every request. In the event of hardware failure, all acknowledged writes will already have been committed to disk.
async: fsync and commit in the background every sync_interval. In the event of hardware failure, all acknowledged writes since the last automatic commit will be discarded.

写索引调优

1 Use bulk requests

批量请求

Bulk requests will yield much better performance than single-document index requests.

2 Use multiple workers/threads to send data to Elasticsearch

多线程,但要注意并发量不能太大以至于es无法处理而报错

Make sure to watch for TOO_MANY_REQUESTS (429) response codes (EsRejectedExecutionException with the Java client), which is the way that Elasticsearch tells you that it cannot keep up with the current indexing rate. When it happens, you should pause indexing a bit before trying again, ideally with randomized exponential backoff.

3 Increase the refresh interval

增加刷新间隔

The default index.refresh_interval is 1s, which forces Elasticsearch to create a new segment every second. Increasing this value (to say, 30s) will allow larger segments to flush and decreases future merge pressure.

4 Disable refresh and replicas for initial loads

在第一次大量写索引时禁用刷新和副本

If you need to load a large amount of data at once, you should disable refresh by setting index.refresh_interval to -1 and set index.number_of_replicas to 0. This will temporarily put your index at risk since the loss of any shard will cause data loss, but at the same time indexing will be faster since documents will be indexed only once. Once the initial loading is finished, you can set index.refresh_interval and index.number_of_replicas back to their original values.

5 Disable swapping

禁用swap

You should make sure that the operating system is not swapping out the java process by disabling swapping.

# swapoff -a

6 Give memory to the filesystem cache

The filesystem cache will be used in order to buffer I/O operations. You should make sure to give at least half the memory of the machine running Elasticsearch to the filesystem cache.

7 Use auto-generated ids

尽量使用自动生成id,可以节省查找id是否存在的开销;

When indexing a document that has an explicit id, Elasticsearch needs to check whether a document with the same id already exists within the same shard, which is a costly operation and gets even more costly as the index grows. By using auto-generated ids, Elasticsearch can skip this check, which makes indexing faster.

8 Use faster hardware

使用更快的硬件,比如更多的内存缓存或者ssd

If indexing is I/O bound, you should investigate giving more memory to the filesystem cache (see above) or buying faster drives. In particular SSD drives are known to perform better than spinning disks.

9 Indexing buffer size

增加indices.memory.index_buffer_size,通常每个shard最多需要512M

If your node is doing only heavy indexing, be sure indices.memory.index_buffer_size is large enough to give at most 512 MB indexing buffer per shard doing heavy indexing (beyond that indexing performance does not typically improve).

indices.memory.index_buffer_size

Accepts either a percentage or a byte size value. It defaults to 10%, meaning that 10% of the total heap allocated to a node will be used as the indexing buffer size shared across all shards.

修改配置

1 索引动态配置

$ curl -XPUT -H 'Content-Type: application/json' 'http://localhost:9200/testdoc/_settings' -d '{
"index": {
"refresh_interval":"-1",
"number_of_replicas":0,
"index.translog.durability":"async"
}
}'

可反复修改,设置为null即可恢复默认

2 集群配置

$ vi elasticsearch.yml
indices.memory.index_buffer_size: 40%
thread_pool.write.queue_size: 1024

修改后同步到所有节点并重启

注意以下配置已经deprecated

The bulk thread pool has been renamed to the write thread pool. This change was made to reflect the fact that this thread pool is used to execute all write operations: single-document index/delete/update requests, as well as bulk requests.

thread_pool.index.type
thread_pool.index.size
thread_pool.index.queue_size
thread_pool.bulk.type
thread_pool.bulk.size
thread_pool.bulk.queue_size

另外以上配置也不能通过api修改(即http://localhost:9200/_cluster/settings)

The prefix on all thread pool settings has been changed from threadpool to thread_pool.
Thread pool settings are now node-level settings. As such, it is not possible to update thread pool settings via the cluster settings API.

参考:
https://www.elastic.co/guide/en/elasticsearch/reference/master/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/logstash/current/performance-troubleshooting.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/tune-for-disk-usage.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/index-modules.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/index-modules-translog.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/index-modules-merge.html

【原创】大数据基础之ElasticSearch(5)重要配置及调优的更多相关文章

  1. 【原创】大数据基础之Hive(5)性能调优Performance Tuning

    1 compress & mr hive默认的execution engine是mr hive> set hive.execution.engine;hive.execution.eng ...

  2. 【原创】大数据基础之Impala(3)部分调优

    1)将coordinator和executor角色分离 By default, each host in the cluster that runs the impalad daemon can ac ...

  3. 【原创】大数据基础之ElasticSearch(4)es数据导入过程

    1 准备analyzer 内置analyzer 参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis- ...

  4. 【原创】大数据基础之ElasticSearch(1)简介、安装、使用

    ElasticSearch 6.6.0 官方:https://www.elastic.co/ 一 简介 ElasticSearch简单来说是对lucene的分布式封装,增加了shard(每个shard ...

  5. 【原创】大数据基础之ElasticSearch(2)常用API整理

    Fortunately, Elasticsearch provides a very comprehensive and powerful REST API that you can use to i ...

  6. 【原创】大数据基础之ElasticSearch(3)升级

    elasticsearch版本升级方案 常用的滚动升级过程(Rolling Upgrade)如下: $ curl -XPUT '$es_server:9200/_cluster/settings?pr ...

  7. 【原创】大数据基础之Zookeeper(2)源代码解析

    核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...

  8. 大数据篇:ElasticSearch

    ElasticSearch ElasticSearch是什么 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口. ...

  9. 数据倾斜是多么痛?spark作业调优秘籍

    目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么?      CSDN日报20170703——<从高考到程序员——我一直在寻找答案>      [直播]探究L ...

随机推荐

  1. 相约南湖,南京都昌信息亮相南湖HIT论坛

    金秋十月,雨过南湖水似油 ,烟雾蒙蒙净长空 2017年10月15日, 南湖HIT论坛迎来了第六届.本次论坛吸引了500名来自全国各地医疗机构.卫生行政主管部门的信息化主管和医疗IT企业的精英,齐聚嘉兴 ...

  2. 使用 xUnit 编写 ASP.NET Core 单元测试

    还记得 .NET Framework 的 ASP.NET WebForm 吗?那个年代如果要在 Web 层做单元测试简直就是灾难啊..NET Core 吸取教训,在设计上考虑到了可测试性,就连 ASP ...

  3. 随心测试_软测基础_002_<测试工程师_核心技能体系>

    测试工程师核心技能体系构成 测试基础体系:[对象——>方法——>流程].[测试活动类型——>质量] 测试分析体系:[测试对象分析]——>[测试设计(计划.数据.用例.文档)] ...

  4. docker私有镜像仓库搭建

    环境:centos7,dockere版本:18.09.0,镜像仓库:v2 docker-registry:192.168.137.101   docker私有仓库服务器 docker-app: 192 ...

  5. Mybatis逆向工程 —— ResultMaps collection already contains value for ***

    报错提示: Result Maps collection already contains value for ***. 遭遇场景: maven+ssm 项目中,采用了mybatis的逆向工程生成 p ...

  6. css3 animation(左右摆动) (放大缩小)

    左右摆动: @-webkit-keyframes roundRule{ 0%, 100%{ -webkit-transform: rotate(-15deg); } 50%{ -webkit-tran ...

  7. Hadoop Mapreduce分区、分组、二次排序

    1.MapReduce中数据流动   (1)最简单的过程:  map - reduce   (2)定制了partitioner以将map的结果送往指定reducer的过程: map - partiti ...

  8. Linux(Ubuntu)使用日记------vim复制内容到其他应用

    1.用vim 打开一个文件,然后执行命令:reg 查看是否有 + 或者 × 号  或者执行:version 命令 查看是否有+clipboard 2.如果存在跳过此步骤.如果不存在:在终端输入 sud ...

  9. vhdl verilog

    一个signal. reg 不能同时在两个always 或者 process 中,synth 8-3352

  10. Html | Vue | Element UI——引入使用

    前言 做个项目,需要一个效果刚好Element UI有,就想配合Vue和Element UI,放在tp5.1下使用,但是引入在线的地址各种报错,本地引入就完美的解决了问题! 代码 __STATIC_J ...