【原创】大数据基础之ElasticSearch(5)重要配置及调优
Index Settings 重要索引配置
Index level settings can be set per-index. Settings may be:
1 static 静态索引配置
They can only be set at index creation time or on a closed index.
只能在创建索引时设置或者在closed状态的索引上设置;
index.number_of_shards
The number of primary shards that an index should have. Defaults to 5. This setting can only be set at index creation time. It cannot be changed on a closed index. Note: the number of shards are limited to 1024 per index.
2 dynamic 动态索引配置
They can be changed on a live index using the update-index-settings API.
可以在索引存在时通过api修改;
index.number_of_replicas
The number of replicas each primary shard has. Defaults to 1.
index.refresh_interval
How often to perform a refresh operation, which makes recent changes to the index visible to search. Defaults to 1s. Can be set to -1 to disable refresh.
index.blocks.read_only
Set to true to make the index and index metadata read only, false to allow writes and metadata changes.
index.blocks.read
Set to true to disable read operations against the index.
index.blocks.write
Set to true to disable data write operations against the index. Unlike read_only, this setting does not affect metadata. For instance, you can close an index with a write block, but not an index with a read_only block.
index.merge.scheduler.max_thread_count
The maximum number of threads on a single shard that may be merging at once. Defaults to Math.max(1, Math.min(4, Runtime.getRuntime().availableProcessors() / 2)) which works well for a good solid-state-disk (SSD). If your index is on spinning platter drives instead, decrease this to 1.
index.translog.durability
Whether or not to fsync and commit the translog after every index, delete, update, or bulk request. This setting accepts the following parameters:
request: (default) fsync and commit after every request. In the event of hardware failure, all acknowledged writes will already have been committed to disk.
async: fsync and commit in the background every sync_interval. In the event of hardware failure, all acknowledged writes since the last automatic commit will be discarded.
写索引调优
1 Use bulk requests
批量请求
Bulk requests will yield much better performance than single-document index requests.
2 Use multiple workers/threads to send data to Elasticsearch
多线程,但要注意并发量不能太大以至于es无法处理而报错
Make sure to watch for TOO_MANY_REQUESTS (429) response codes (EsRejectedExecutionException with the Java client), which is the way that Elasticsearch tells you that it cannot keep up with the current indexing rate. When it happens, you should pause indexing a bit before trying again, ideally with randomized exponential backoff.
3 Increase the refresh interval
增加刷新间隔
The default index.refresh_interval is 1s, which forces Elasticsearch to create a new segment every second. Increasing this value (to say, 30s) will allow larger segments to flush and decreases future merge pressure.
4 Disable refresh and replicas for initial loads
在第一次大量写索引时禁用刷新和副本
If you need to load a large amount of data at once, you should disable refresh by setting index.refresh_interval to -1 and set index.number_of_replicas to 0. This will temporarily put your index at risk since the loss of any shard will cause data loss, but at the same time indexing will be faster since documents will be indexed only once. Once the initial loading is finished, you can set index.refresh_interval and index.number_of_replicas back to their original values.
5 Disable swapping
禁用swap
You should make sure that the operating system is not swapping out the java process by disabling swapping.
# swapoff -a
6 Give memory to the filesystem cache
The filesystem cache will be used in order to buffer I/O operations. You should make sure to give at least half the memory of the machine running Elasticsearch to the filesystem cache.
7 Use auto-generated ids
尽量使用自动生成id,可以节省查找id是否存在的开销;
When indexing a document that has an explicit id, Elasticsearch needs to check whether a document with the same id already exists within the same shard, which is a costly operation and gets even more costly as the index grows. By using auto-generated ids, Elasticsearch can skip this check, which makes indexing faster.
8 Use faster hardware
使用更快的硬件,比如更多的内存缓存或者ssd
If indexing is I/O bound, you should investigate giving more memory to the filesystem cache (see above) or buying faster drives. In particular SSD drives are known to perform better than spinning disks.
9 Indexing buffer size
增加indices.memory.index_buffer_size,通常每个shard最多需要512M
If your node is doing only heavy indexing, be sure indices.memory.index_buffer_size is large enough to give at most 512 MB indexing buffer per shard doing heavy indexing (beyond that indexing performance does not typically improve).
indices.memory.index_buffer_size
Accepts either a percentage or a byte size value. It defaults to 10%, meaning that 10% of the total heap allocated to a node will be used as the indexing buffer size shared across all shards.
修改配置
1 索引动态配置
$ curl -XPUT -H 'Content-Type: application/json' 'http://localhost:9200/testdoc/_settings' -d '{
"index": {
"refresh_interval":"-1",
"number_of_replicas":0,
"index.translog.durability":"async"
}
}'
可反复修改,设置为null即可恢复默认
2 集群配置
$ vi elasticsearch.yml
indices.memory.index_buffer_size: 40%
thread_pool.write.queue_size: 1024
修改后同步到所有节点并重启
注意以下配置已经deprecated
The bulk thread pool has been renamed to the write thread pool. This change was made to reflect the fact that this thread pool is used to execute all write operations: single-document index/delete/update requests, as well as bulk requests.
thread_pool.index.type
thread_pool.index.size
thread_pool.index.queue_size
thread_pool.bulk.type
thread_pool.bulk.size
thread_pool.bulk.queue_size
另外以上配置也不能通过api修改(即http://localhost:9200/_cluster/settings)
The prefix on all thread pool settings has been changed from threadpool to thread_pool.
Thread pool settings are now node-level settings. As such, it is not possible to update thread pool settings via the cluster settings API.
参考:
https://www.elastic.co/guide/en/elasticsearch/reference/master/tune-for-indexing-speed.html
https://www.elastic.co/guide/en/logstash/current/performance-troubleshooting.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/tune-for-disk-usage.html
https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/index-modules.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/index-modules-translog.html
https://www.elastic.co/guide/en/elasticsearch/reference/master/index-modules-merge.html
【原创】大数据基础之ElasticSearch(5)重要配置及调优的更多相关文章
- 【原创】大数据基础之Hive(5)性能调优Performance Tuning
1 compress & mr hive默认的execution engine是mr hive> set hive.execution.engine;hive.execution.eng ...
- 【原创】大数据基础之Impala(3)部分调优
1)将coordinator和executor角色分离 By default, each host in the cluster that runs the impalad daemon can ac ...
- 【原创】大数据基础之ElasticSearch(4)es数据导入过程
1 准备analyzer 内置analyzer 参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis- ...
- 【原创】大数据基础之ElasticSearch(1)简介、安装、使用
ElasticSearch 6.6.0 官方:https://www.elastic.co/ 一 简介 ElasticSearch简单来说是对lucene的分布式封装,增加了shard(每个shard ...
- 【原创】大数据基础之ElasticSearch(2)常用API整理
Fortunately, Elasticsearch provides a very comprehensive and powerful REST API that you can use to i ...
- 【原创】大数据基础之ElasticSearch(3)升级
elasticsearch版本升级方案 常用的滚动升级过程(Rolling Upgrade)如下: $ curl -XPUT '$es_server:9200/_cluster/settings?pr ...
- 【原创】大数据基础之Zookeeper(2)源代码解析
核心枚举 public enum ServerState { LOOKING, FOLLOWING, LEADING, OBSERVING; } zookeeper服务器状态:刚启动LOOKING,f ...
- 大数据篇:ElasticSearch
ElasticSearch ElasticSearch是什么 ElasticSearch是一个基于Lucene的搜索服务器.它提供了一个分布式多用户能力的全文搜索引擎,基于RESTful web接口. ...
- 数据倾斜是多么痛?spark作业调优秘籍
目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么? CSDN日报20170703——<从高考到程序员——我一直在寻找答案> [直播]探究L ...
随机推荐
- 控制结构(10): 指令序列(opcode)
// 上一篇:管道(pipeline) // 下一篇:Continuation-passing_style(CPS) 发现问题 在一个正式项目的开发周期中,除了源代码版本控制外,还存在着项目的配置/编 ...
- Python——collections模块(扩展数据类型)
1.namedtuple:利用坐标.空间坐标,扑克牌等指定空间位置 # namedtuple('名字',[list列表属性])from collections import namedtuple Po ...
- js DOM操作 容易犯的错误
这样一段html片段 <select class="form-control" id="course_chapter" onchange="fi ...
- codeforces660C
Hard Process CodeForces - 660C You are given an array a with n elements. Each element of a is either ...
- [模板] 回文树/回文自动机 && BZOJ3676:[Apio2014]回文串
回文树/回文自动机 放链接: 回文树或者回文自动机,及相关例题 - F.W.Nietzsche - 博客园 状态数的线性证明 并没有看懂上面的证明,所以自己脑补了一个... 引理: 每一个回文串都是字 ...
- JarvisOJ Misc webshell分析
分析压缩包中的数据包文件并获取flag.flag为32位大写md5. 神仙们还是强啊,webshell主要看http流,再过滤只剩下post请求 可以使用 http.request.method == ...
- Python 常用模块大全(整理)
https://www.cnblogs.com/jpfss/p/9686050.html
- Unity3d中如何查找一个脚本被挂在那些预设上面?
用一个脚本函数可以获取到选择的脚本文件被哪些预设和场景引用 [MenuItem("Assets/Tool/GetReference")] static void GetRefere ...
- 安全工具acunetix使用
今天来主要介绍了安全测试工具AWVS(acunetix web vulnerability scanner)的使用 1) 安装包的下载地址:https://github.com/jiyanjiao/ ...
- Django_modelform组件
modelForm 组件 概念 将数据库与form 组件结合用起来的中间插件 与 form 组件的区别 form组件的难处: form 可以实现 对数据的验证以及 form 的表单标签的生成 但是她做 ...