1.线程理论
什么是线程:线程是cpu的最小执行单位(实体),进程是操作系统的数据资源分配单位
 
2.线程的两种创建方式(重点)
查看线程的pid:使用os模块查看id,线程的id应该是相同的
3.多线程和多进程的效率对比: 
IO密集型(遇到io切换提高代码效率)和计算密集型(切换降低代码效率):切换的时候需要保存状态和切换的时间
多线程用不了多核技术,遇到纯计算的时候,多线程回避多进程的运行时间高
import time
from threading import Thread
from multiprocessing import Process
 
def f1():
    # time.sleep(1) #io密集型以后遇到的情况一遍是这样的 
    # a= 1
    # a= a+1
    # print('xxx')
    pass
if __name__ == '__main__':
    #查看一个20个多线程执行20个任务的执行时间
    t_s_time = time.time()
    t_list =[]
    for i in range(20):
        t = Thread(target=f1,)
        t.start()
        t_list.append(t)
    [tt.join() for tt in t_list]
    t_e_time = time.time()
    t_dif_time = t_e_time - t_s_time
    #查看一下20个进程执行同样的任务的执行时间
    p_s_time = time.time()
    p_list = []
    for i in range(20):
        p = Process(target=f1, )
        p.start()
        p_list.append(p)
    [pp.join() for pp in t_list]
    p_e_time = time.time()
    p_dif_time = p_e_time - p_s_time
 
    print('多线程的执行时间:', t_dif_time)
    print('多进程的执行时间:', p_dif_time)
4.线程空间是不是隔离的:共享数据可以被更改,
import time
from threading import Thread
 
num =100
def f1(n):
    time.sleep(3)
    global num
    num= 3
    print('子线程的num',num)
 
 
if __name__ == '__main__':
    t = Thread(target=f1,args=(1,))
    t.start()
    t.join()
    print('主线程中的num',num)
 
#子线程的num 3
# 主线程中的num 3
5.守护线程
p.daemon =True  主进程的代码运行完毕,设置为守护进程的子进程会随之结束
6.锁(重点)
线程和进程的锁一样,都是牺牲了效率,保证了数据的安全
import time
from threading import Thread,Lock
 
num = 100
 
def f1(loc):
    loc.acquire()  #遇到锁,10个线程抢一个,一个进行更改数据,从并行状态更改成串行状态,牺牲的效率,保证了数据的安全
    global num   #global 只是声明变量,没有拿变量
    # num -= 1
    tmp = num
    tmp -=1
    time.sleep(0.2)
    num = tmp
    loc.release()  #解锁,把上一个更改的数据更改完成之后进行解锁,解锁之后,剩余9个在重新抢这个锁在重新更改num值,
 
 
if __name__ == '__main__':
    t_lock = Lock()
    t_list = []   #把10个线程放到一个列表,保证线程结束,主要的等待线程的结束
    for i in range(10):
        t = Thread(target=f1,args=(t_lock,))
        t.start()
        t_list.append(t)
    [tt.join() for tt in t_list]
    print('主线程的num',num)
 
#主线程的num 90
死锁现象(重点):
两个锁进行了嵌套,一个锁包含了另一个锁
主要在数据运算\分析的时候,注意到锁跟锁嵌套的关系,容易出现死锁现象,解决这个现象问题,出现了递归锁
 
递归锁(重点) Rlock
import time
from threading import Thread,Lock,RLock
 
def f1(locA,locB):
    print('xxxx')
    time.sleep(0.1)
    locA.acquire()
    print('f1>>>1号抢到了A锁')
    time.sleep(1)
    locB.acquire()
    print('f1>>>2号抢到了B锁')
    locB.release()
    locA.release()
 
def f2(locA,locB):
    print('22222')
    time.sleep(0.1)
    locB.acquire()
    print('f2>>>1号抢到了B锁')
    time.sleep(1)
    locA.acquire()
    print('f2>>>2号抢到了A锁')
    locB.release()
    locA.release()
 
if __name__ == '__main__':
    # locA = Lock()
    # locB = Lock()
    locA = locB = RLock()   #递归锁,维护一个计数器,acquire一次加1,release一次减1,
    t1 = Thread(target=f1, args=(locA, locB))
    t2 = Thread(target=f2, args=(locA, locB))
    t1.start()
    t2.start()
    # print(t1)
    # print(t2)
递归锁,维护一个
GIL锁(重点) 
解释器上添加的锁,互斥锁造成效率不高 
计算密集型:多进程可以应用多核技术,因为每个进程里面都有解释器程序.
计算密集型的任务,由于python多线程,不能应用多核,所以效率不高,几个线程串行执行了.
io密集型的任务:多线程的任务比多进程更有优势,
 
 
 
 
 
 
 
 
 
1.线程理论
什么是线程:线程是cpu的最小执行单位(实体),进程是操作系统的数据资源分配单位
 
2.线程的两种创建方式(重点)
查看线程的pid:使用os模块查看id,线程的id应该是相同的
3.多线程和多进程的效率对比: 
IO密集型(遇到io切换提高代码效率)和计算密集型(切换降低代码效率):切换的时候需要保存状态和切换的时间
多线程用不了多核技术,遇到纯计算的时候,多线程回避多进程的运行时间高
import time
from threading import Thread
from multiprocessing import Process
 
def f1():
    # time.sleep(1) #io密集型以后遇到的情况一遍是这样的 
    # a= 1
    # a= a+1
    # print('xxx')
    pass
if __name__ == '__main__':
    #查看一个20个多线程执行20个任务的执行时间
    t_s_time = time.time()
    t_list =[]
    for i in range(20):
        t = Thread(target=f1,)
        t.start()
        t_list.append(t)
    [tt.join() for tt in t_list]
    t_e_time = time.time()
    t_dif_time = t_e_time - t_s_time
    #查看一下20个进程执行同样的任务的执行时间
    p_s_time = time.time()
    p_list = []
    for i in range(20):
        p = Process(target=f1, )
        p.start()
        p_list.append(p)
    [pp.join() for pp in t_list]
    p_e_time = time.time()
    p_dif_time = p_e_time - p_s_time
 
    print('多线程的执行时间:', t_dif_time)
    print('多进程的执行时间:', p_dif_time)
4.线程空间是不是隔离的:共享数据可以被更改,
import time
from threading import Thread
 
num =100
def f1(n):
    time.sleep(3)
    global num
    num= 3
    print('子线程的num',num)
 
 
if __name__ == '__main__':
    t = Thread(target=f1,args=(1,))
    t.start()
    t.join()
    print('主线程中的num',num)
 
#子线程的num 3
# 主线程中的num 3
5.守护线程
p.daemon =True  主进程的代码运行完毕,设置为守护进程的子进程会随之结束
6.锁(重点)
线程和进程的锁一样,都是牺牲了效率,保证了数据的安全
import time
from threading import Thread,Lock
 
num = 100
 
def f1(loc):
    loc.acquire()  #遇到锁,10个线程抢一个,一个进行更改数据,从并行状态更改成串行状态,牺牲的效率,保证了数据的安全
    global num   #global 只是声明变量,没有拿变量
    # num -= 1
    tmp = num
    tmp -=1
    time.sleep(0.2)
    num = tmp
    loc.release()  #解锁,把上一个更改的数据更改完成之后进行解锁,解锁之后,剩余9个在重新抢这个锁在重新更改num值,
 
 
if __name__ == '__main__':
    t_lock = Lock()
    t_list = []   #把10个线程放到一个列表,保证线程结束,主要的等待线程的结束
    for i in range(10):
        t = Thread(target=f1,args=(t_lock,))
        t.start()
        t_list.append(t)
    [tt.join() for tt in t_list]
    print('主线程的num',num)
 
#主线程的num 90
死锁现象(重点):
两个锁进行了嵌套,一个锁包含了另一个锁
主要在数据运算\分析的时候,注意到锁跟锁嵌套的关系,容易出现死锁现象,解决这个现象问题,出现了递归锁
 
递归锁(重点) Rlock
import time
from threading import Thread,Lock,RLock
 
def f1(locA,locB):
    print('xxxx')
    time.sleep(0.1)
    locA.acquire()
    print('f1>>>1号抢到了A锁')
    time.sleep(1)
    locB.acquire()
    print('f1>>>2号抢到了B锁')
    locB.release()
    locA.release()
 
def f2(locA,locB):
    print('22222')
    time.sleep(0.1)
    locB.acquire()
    print('f2>>>1号抢到了B锁')
    time.sleep(1)
    locA.acquire()
    print('f2>>>2号抢到了A锁')
    locB.release()
    locA.release()
 
if __name__ == '__main__':
    # locA = Lock()
    # locB = Lock()
    locA = locB = RLock()   #递归锁,维护一个计数器,acquire一次加1,release一次减1,
    t1 = Thread(target=f1, args=(locA, locB))
    t2 = Thread(target=f2, args=(locA, locB))
    t1.start()
    t2.start()
    # print(t1)
    # print(t2)
递归锁,维护一个
GIL锁(重点) 
解释器上添加的锁,互斥锁造成效率不高 
计算密集型:多进程可以应用多核技术,因为每个进程里面都有解释器程序.
计算密集型的任务,由于python多线程,不能应用多核,所以效率不高,几个线程串行执行了.
io密集型的任务:多线程的任务比多进程更有优势,
 
 
 
 
 
 
 
 
 

day 33 线程的更多相关文章

  1. 深入浅出 Java Concurrency (33): 线程池 part 6 线程池的实现及原理 (1)[转]

    线程池数据结构与线程构造方法 由于已经看到了ThreadPoolExecutor的源码,因此很容易就看到了ThreadPoolExecutor线程池的数据结构.图1描述了这种数据结构. 图1 Thre ...

  2. day 33 线程池有关的

    # cpu 的核心数# import os# print(os.cpu_count()) ## 爬虫的进程和线程的应用# 第一步 虚拟一个浏览器下载 在cmd 里输入 pip install requ ...

  3. day 33 线程锁

    Python的GIL锁 - Python内置的一个全局解释器锁,锁的作用就是保证同一时刻一个进程中只有一个线程可以被cpu调度. 为什么有这把GIL锁? 答:Python语言的创始人在开发这门语言时, ...

  4. python基础(33):线程(一)

    1. 线程概念的引入背景 1.1 进程 之前我们已经了解了操作系统中进程的概念,程序并不能单独运行,只有将程序装载到内存中,系统为它分配资源才能运行,而这种执行的程序就称之为进程.程序和进程的区别就在 ...

  5. Java线程:线程的同步-同步方法

    Java线程:线程的同步-同步方法   线程的同步是保证多线程安全访问竞争资源的一种手段. 线程的同步是Java多线程编程的难点,往往开发者搞不清楚什么是竞争资源.什么时候需要考虑同步,怎么同步等等问 ...

  6. Java线程:概念与原理

    Java线程:概念与原理 一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程 ...

  7. Java线程:线程状态的转换

    Java线程:线程状态的转换   一.线程状态   线程的状态转换是线程控制的基础.线程状态总的可分为五大状态:分别是生.死.可运行.运行.等待/阻塞.用一个图来描述如下:   1.新状态:线程对象已 ...

  8. java线程详解

    Java线程:概念与原理 一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程 ...

  9. Java线程详解----借鉴

    Java线程:概念与原理 一.操作系统中线程和进程的概念 现在的操作系统是多任务操作系统.多线程是实现多任务的一种方式. 进程是指一个内存中运行的应用程序,每个进程都有自己独立的一块内存空间,一个进程 ...

随机推荐

  1. asp.net 服务器控件的 ID,ClientID,UniqueID 的区别

    1.简述 ID是设计的时候自己所指定的ID,是我们分配给服务器控件的编程标识符,我们常常使用this.controlid来寻找控件,那么这个controlid就是这里所说的ID. ClientID是由 ...

  2. [BZOJ 1033][ZJOI2008]杀蚂蚁antbuster

    1033: [ZJOI2008]杀蚂蚁antbuster Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1200  Solved: 507[Submi ...

  3. npm WARN network …… request to https://cnpmjs.…… failed, reason: socket hang up

    出现类似问题的原因是由于之前配置了镜像导致的 解决方案:删掉镜像,使用npm本身进行安装 删除镜像的命令: 方法1: npm config delete registry 方法2: npm confi ...

  4. Genymotion安卓模拟器和VirtualBox虚拟机安装、配置、测试(win7_64bit)

    1.概述 VirtualBox是一个优秀的虚拟机软件,它可以在电脑上提供另一个操作系统的运行环境,使多个系统同时运行.VirtualBox支持的操作系统包括Windows.Mac OS X.Linux ...

  5. Voronoi图及matlab实现

    [题外话:想一想真是...美赛时我预测求爱尔兰的充电站位置分布,画Voronoi图,程序跑了一个小时...]   Voronoi图,又叫泰森多边形或Dirichlet图,它是由一组由连接两邻点直线的垂 ...

  6. URAL-1019 Line Painting----暴力或线段树

    题目链接: https://cn.vjudge.net/problem/URAL-1019 题目大意: 一个0~1e9的区间,初始都是白的,现进行N次操作,每次将一段区间图上一中颜色.最后问说连续最长 ...

  7. 指令集 与 cpu

    http://cache.baiducontent.com/c?m=9d78d513d9d437ab4f9d9e697c15c0116e4381132ba7a1020ca08448e2732d4050 ...

  8. UVa 12661 - Funny Car Racing(Dijkstra)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  9. geomesa hbase geoserver

    在geoserver中配置hbase ln -s /root/hbase/hbase-1.4.8/conf/hbase-site.xml /root/tomcat/apache-tomcat-7.0. ...

  10. ajax传递数组,后台接收为null解决方法

    traditional:true,加上这个就好,默认为false,即允许深度序列化参数,但是servlet api不支持,所有设为true阻止就好了. $.ajax({ type:'post', ur ...