【生成树,堆】【CF1095F】 Make It Connected
Description
给定 \(n\) 个点,每个点有点权,连结两个点花费的代价为两点的点权和。另外有 \(m\) 条特殊边,参数为 \(x,y,z\)。意为如果你选择这条边,就可以花费 \(z\) 的代价将点 \(x\) 和点 \(y\) 连结起来,当然你也可以不选择这条边。求使整个图联通的最小代价
Input
第一行是两个整数,分别是点数 \(n\) 和特殊边的数量 \(m\)
下面一行 \(n\) 个数,第 \(i\) 个数代表点 \(i\) 的点权
下面 \(m\) 行,每行三个数 \(x,y,z\),代表一条特殊边
Output
输出一行一个整数,最小代价
Hint
\(1~\leq~n~\leq~2~\times~10^5~,0~\leq~m~\leq~2~\times~10^5\)
设第 \(i\) 个点的点权为 \(a_i\),第 \(j\) 条特殊边的边权为 \(z_j\),保证
\(1~\leq~a_i,z_j~\leq~10^{12}\)
保证特殊边的参数 \(x~\neq~y\)
Solution
显然这个题目是要求一个 MST (最小生成树),但是 \(O(n^2)\) 建图显然不可取。
我们考虑克鲁斯卡尔算法的本质:
有若干个联通块,每次寻找联通块间权值最小的边将之连结。
考虑对于本题来说,在不考虑特殊边的情况下,连结两个联通块,显然要分别选择两个联通块内点权最小的点连结。于是我们对每个集合维护点权最小的点,每次取出点权前两小的集合进行连边即可。维护点权前两小的集合显然可以用一个堆做。
考虑有特殊边怎么办:
我们把特殊边排序,每次比较当前的特殊边的权值小还是前两个联通块的点权小,选择更小的合并。
注意处理一下当前选出的两个点在一个集合中的情况。
因为一共要做 \(O(n)\) 次,每次会有 \(O(1)\) 次对堆的插入和删除操作,于是复杂度 \(O(n \log n)\)
Code
#include <cstdio>
#include <queue>
#include <algorithm>
#ifdef ONLINE_JUDGE
#define freopen(a, b, c)
#endif
#define rg register
#define ci const int
#define cl const long long
typedef long long int ll;
namespace IPT {
const int L = 1000000;
char buf[L], *front=buf, *end=buf;
char GetChar() {
if (front == end) {
end = buf + fread(front = buf, 1, L, stdin);
if (front == end) return -1;
}
return *(front++);
}
}
template <typename T>
inline void qr(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch=IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = (x << 1) + (x << 3) + (ch ^ 48), ch = IPT::GetChar();
if (lst == '-') x = -x;
}
template <typename T>
inline void ReadDb(T &x) {
rg char ch = IPT::GetChar(), lst = ' ';
while ((ch > '9') || (ch < '0')) lst = ch, ch = IPT::GetChar();
while ((ch >= '0') && (ch <= '9')) x = x * 10 + (ch ^ 48), ch = IPT::GetChar();
if (ch == '.') {
ch = IPT::GetChar();
double base = 1;
while ((ch >= '0') && (ch <= '9')) x += (ch ^ 48) * ((base *= 0.1)), ch = IPT::GetChar();
}
if (lst == '-') x = -x;
}
namespace OPT {
char buf[120];
}
template <typename T>
inline void qw(T x, const char aft, const bool pt) {
if (x < 0) {x = -x, putchar('-');}
rg int top=0;
do {OPT::buf[++top] = x % 10 + '0';} while (x /= 10);
while (top) putchar(OPT::buf[top--]);
if (pt) putchar(aft);
}
const int maxn = 200010;
const int maxm = 400010;
struct Edge {
int from, to;
ll v;
inline bool operator<(const Edge &_others) const {
return this->v < _others.v;
}
};
Edge edge[maxm];
int n, m;
int ufs[maxn], vec[maxn], rk[maxn];
ll ans;
ll MU[maxn];
struct Zay {
int id;
ll v;
inline bool operator<(const Zay &_others) const {
return this->v > _others.v;
}
};
std::priority_queue<Zay>Q;
int find(ci x) {return ufs[x] == x ? x : ufs[x] = find(ufs[x]);}
int main() {
freopen("1.in", "r", stdin);
qr(n); qr(m);
for (rg int i = 1; i <= n; ++i) qr(MU[i]);
for (rg int i = 1; i <= m; ++i) {
qr(edge[i].from); qr(edge[i].to); qr(edge[i].v);
}
std::sort(edge + 1, edge + 1 + m);
edge[m + 1].v = 1ll << 62;
for (rg int i = 1; i <= n; ++i) ufs[i] = i, vec[i] = i, rk[i] = 1, Q.push((Zay){i, MU[i]});
for (rg int i = 1, cur = 1; i < n; ++i) {
while ((cur <= m) && (find(edge[cur].from) == find(edge[cur].to))) ++cur;
Zay t1 = Q.top(); Q.pop(); Zay t2 = Q.top(); Q.pop();
while (find(t1.id) == find(t2.id)) {t2 = Q.top(); Q.pop();}
if ((t1.v + t2.v) <= edge[cur].v) {
int fa = find(t1.id), fb = find(t2.id);
ans += t1.v + t2.v;
if (rk[fa] < rk[fb]) ufs[fb] = fa;
else if (rk[fa] > rk[fb]) ufs[fa] = fb;
else ufs[fa] = fb, ++rk[fb];
Q.push((Zay){find(fa), t1.v});
vec[find(fa)] = vec[fa];
} else {
int fa = find(edge[cur].from), fb = find(edge[cur].to);
ans += edge[cur].v;
if (rk[fa] < rk[fb]) ufs[fb] = fa;
else if (rk[fa] > rk[fb]) ufs[fa] = fb;
else ufs[fa] = fb, ++rk[fb];
Q.push((Zay){find(fa), MU[vec[fa]]});
vec[find(fa)] = vec[fa];
Q.push(t1); Q.push(t2);
}
}
qw(ans, '\n', true);
return 0;
}
【生成树,堆】【CF1095F】 Make It Connected的更多相关文章
- [CF1095F]Make It Connected
题目大意:给你$n(n\leqslant2\times10^5)$个点和$m(m\leqslant2\times10^5)$条边,第$i$个点点权为$a_i$.连接$u,v$两个点的代价为$a_u+a ...
- 【CF1095F】 Make It Connected(最小生成树)
题目链接 如果没有特殊边的话显然答案就是权值最小的点向其他所有点连边. 所以把特殊边和权值最小的点向其他点连的边丢一起跑最小生成树就行了. #include <cstdio> #inclu ...
- 题解 CF1095F 【Make It Connected】
题意简述 \(n\)( \(1≤n≤2×10^5\) )个点,每个点 \(i\) 有一个点权 \(a_i\) ( \(1≤a_i≤2×10^{12}\) ),将两个点 \(i\),\(j\) 直接相连 ...
- POJ 2728 Desert King 最优比率生成树
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 20978 Accepted: 5898 [Des ...
- POJ 2728 Desert King(最优比例生成树 二分 | Dinkelbach迭代法)
Desert King Time Limit: 3000MS Memory Limit: 65536K Total Submissions: 25310 Accepted: 7022 Desc ...
- [POJ2728] Desert King 解题报告(最优比率生成树)
题目描述: David the Great has just become the king of a desert country. To win the respect of his people ...
- PAT树_层序遍历叶节点、中序建树后序输出、AVL树的根、二叉树路径存在性判定、奇妙的完全二叉搜索树、最小堆路径、文件路由
03-树1. List Leaves (25) Given a tree, you are supposed to list all the leaves in the order of top do ...
- ACM:Pseudoforest-并查集-最大生成树-解题报
Pseudoforest Time Limit:5000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Submit Status ...
- hdu 3367 Pseudoforest(最大生成树)
Pseudoforest Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) To ...
随机推荐
- 牛客网暑期ACM多校训练营(第一场):E-Removal(DP)
链接:E-Removal 题意:给出序列 s1, s2, ..., sn ,1<=s[i]<=10.问删除m个数后,有多少种不同的序列. 题解:定义dp[i][j]代表长度为i,最末尾的数 ...
- python-property、__get__、__set__
目录 property __set__ 和 __get__ property property装饰器的应用来自这样一个问题:如果对实例的属性值不加以限制,那么实例的属性值会出现明显不合理的情况,为了解 ...
- Windows和Linux系统如何退出python命令行
python命令行是新手学习python过程中必须要学的一个工具,下面我们来看一下怎么退出python命令行. 第一种方式: 使用python提供的exit()函数,linux平台和windows平台 ...
- vs2017 asp.net FriendlyUrls 新特性
这个包如何使用呢?其实很简单,只需将nuget包添加到项目中,再调用routes.EnableFriendlyUrls(),你就可以通过/Foo来访问/Foo.aspx了!你也能够利用URL片段将更多 ...
- hadoop Datanode Uuid unassigned
在配置hadoop的hdfs的时候,要首先格式化,然后才能启动,但是格式化的方式有的是不对出现Initialization failed for Block pool <registering& ...
- python3【基础】-装饰器
要理解充分理解python的装饰器,有充分理解下述三个知识点为前提: python作用域规则 函数即对象 闭包 一.python作用域规则: 首先介绍python中的作用域规则.python的作用域规 ...
- DOM实战
作者声明:本博客中所写的文章,都是博主自学过程的笔记,参考了很多的学习资料,学习资料和笔记会注明出处,所有的内容都以交流学习为主.有不正确的地方,欢迎批评指正 视频来源:https://www.bil ...
- centos上搭建git服务--4
Git是目前世界上最先进的分布式版本控制系统(没有之一).使用Svn的请参考<版本控制-svn服务器搭建和常用命令(centos 6.3)>,下面介绍Git的常用命令 常用命令 简单版 升 ...
- Alpha 冲刺9
队名:日不落战队 安琪(队长) 今天完成的任务 协助开发手写涂鸦demo. okhttp学习第三弹. 明天的计划 协助开发语音存储demo. 还剩下的任务 个人信息数据get. 遇到的困难 困难:整理 ...
- jdbc 4.0
1.存储MySQL数据库的date.time.timestamp.datetime以及year类型数据 package com.rong.jielong; import java.sql.Connec ...