[ZJOI2011]细胞——斐波那契数列+矩阵加速+dp
Description
Solution
题目看起来非常复杂。
本质不同的细胞这个条件显然太啰嗦,
是否有些可以挖掘的性质?
1.发现,只要第一次分裂不同,那么互相之间一定是不同的(即使总数目相同)。
所以先考虑第一次分裂后,一个固定小球体数量的情况:
2.第一次分裂后,最后的小球体数量固定。想要方案数不同,必须连接方式不同。
可以列出dp式子,f[n](以n结尾砍一刀)=f[n-2]+f[n-3]+...+f[2]+f[0],而f[0]=1,f[1]=0
而fibo[n]-1=f[n-2]+...+f[1]
可以猜想和斐波那契数列有关。
实际上,f[n]=fibo[n-1],f[1]=0,f[0]=1
所以,如果我们知道第一次分裂的方案,
即S=a1+...+am(分成m段,ai表示这一段拼成的数字)
那么,f[S]=fibo[S-1]
好了,
所以,题意其实是:
• 给出一个数字序列
• 你要先把序列切成很多段,把每一段看做一个十进制数
[ZJOI2011]细胞——斐波那契数列+矩阵加速+dp的更多相关文章
- P1349 广义斐波那契数列(矩阵加速)
P1349 广义斐波那契数列 题目描述 广义的斐波那契数列是指形如an=pan-1+qan-2的数列.今给定数列的两系数p和q,以及数列的最前两项a1和a2,另给出两个整数n和m,试求数列的第n项an ...
- 斐波那契数列 矩阵乘法优化DP
斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007\),\(n\le 10^{18}\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...
- 洛谷P1962 斐波那契数列 || P1349 广义斐波那契数列[矩阵乘法]
P1962 斐波那契数列 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数 ...
- HDU4549 M斐波那契数列 矩阵快速幂+欧拉函数+欧拉定理
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)Total Sub ...
- 51nod1242 斐波那契数列 矩阵快速幂
1242 斐波那契数列的第N项 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 #include<stdio.h> #define mod 100000000 ...
- POJ3070 斐波那契数列 矩阵快速幂
题目链接:http://poj.org/problem?id=3070 题意就是让你求斐波那契数列,不过n非常大,只能用logn的矩阵快速幂来做了 刚学完矩阵快速幂刷的水题,POJ不能用万能头文件是真 ...
- hdu4549 M斐波那契数列 矩阵快速幂+快速幂
M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a, b, n,你能求出F[n]的 ...
- 洛谷P1962 斐波那契数列(矩阵快速幂)
题目背景 大家都知道,斐波那契数列是满足如下性质的一个数列: • f(1) = 1 • f(2) = 1 • f(n) = f(n-1) + f(n-2) (n ≥ 2 且 n 为整数) 题目描述 请 ...
- P1349 广义斐波那契数列(矩阵乘法)
题目 P1349 广义斐波那契数列 解析 把普通的矩阵乘法求斐波那契数列改一改,随便一推就出来了 \[\begin{bmatrix}f_2\\f_1 \end{bmatrix}\begin{bmatr ...
随机推荐
- 优化 VR 动作类游戏《Space Pirate Trainer*》以便在英特尔® 集成显卡上实现卓越的表现
Space Pirate Trainer* 是一款面向 HTC Vive*.Oculus Touch* 和 Windows Mixed Reality* 的原创发行游戏.版本 1.0 于 2017 年 ...
- throttle(节流)和debounce(防抖)
防抖和节流都是用来控制频繁调用的问题,但是这两种的应用场景是有区别的. throttle(节流) 有一个调用周期,在一个很长的时间里分为多段,每一段执行一次.例如onscroll,resize,500 ...
- HIVE中的数据怎么导出到hdfs或本地呢
思路一:重定向 在我不知道工具 ,也不熟悉HIQL语法的情况下,没办法了,只有选择一个最简单粗暴的方法,重定向. 在shell中使用 hive -e 可以在shell中执行hive命令,hive -f ...
- [转载]linux+nginx+python+mysql安装文档
原文地址:linux+nginx+python+mysql安装文档作者:oracletom # 开发包(如果centos没有安装数据库服务,那么要安装下面的mysql开发包) MySQL-devel- ...
- 152.[LeetCode] Maximum Product Subarray
Given an integer array nums, find the contiguous subarray within an array (containing at least one n ...
- 只执行一次的js 函数。
function runOnce(fn, context) { //控制让函数只触发一次 return function () { try { fn.apply(context || this, ar ...
- java 数据存储
简单的记录一下而已. 1.寄存器: 特点:快,存储有限. 存储地点:处理器内部. 2.堆栈 特点:仅次于寄存器快,通过堆栈指针在处理器获取支持.堆栈指针下移,分配内存,上移,释放内存.此外须知生命周期 ...
- inside、outside和dmz之间的访问
现有条件:100M宽带接入,分配一个合法的IP(222.134.135.98)(只有1个静态IP是否够用?);Cisco防火墙PiX515e-r-DMZ-BUN1台(具有Inside.Outside. ...
- python获取前几天的时间
days的参数就是你想获取前多少天的数据,如果是昨天的话,则days=1 import datetime today=datetime.date.today() oneday=datetime.tim ...
- Node.js系列——(2)发起get/post请求
服务器与浏览器的交互主要方式有get/post请求. 下面,我们来看一下node.js发起get/post请求. 1.get 由于get请求的参数在url后面,所以相对比较简单.node.js中的ur ...