【BZOJ3625/CF438E】小朋友和二叉树(多项式求逆,多项式开方)
【BZOJ3625/CF438E】小朋友和二叉树(多项式求逆,多项式开方)
题面
BZOJ
CodeForces
大致题意:
对于每个数出现的次数对应的多项式\(A(x)\)
求$$f(x)=\frac{2}{\sqrt{-4A(x)+1}+1}$$
题解
多项式开方+多项式求逆模板题
我之前写的多项式求逆很丑,常数大的惊人
成功拿到洛谷模板题倒数第一的速度
于是,我学习了一波Gay神的写法
写了一下这道题目
具体的细节暂时不写了,以后肯定有机会的写的(这点我可以保证)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 500000
#define MOD 998244353
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m,inv2,d[MAX];
int fpow(int a,int b)
{
int s=1;
while(b){if(b&1)s=1ll*s*a%MOD;a=1ll*a*a%MOD;b>>=1;}
return s;
}
namespace NTT
{
int r[MAX],N,M,l;
int A[MAX],B[MAX];
void NTT(int *P,int n,int opt)
{
int N=1,l=0;for(N=1;N<n;N<<=1)++l;
for(int i=0;i<N;++i)r[i]=(r[i>>1]>>1)|((i&1)<<(l-1));
for(int i=1;i<N;++i)if(i<r[i])swap(P[i],P[r[i]]);
for(int i=1;i<N;i<<=1)
{
int W=fpow(3,(MOD-1)/(i<<1));
for(int p=i<<1,j=0;j<N;j+=p)
{
int w=1;
for(int k=0;k<i;++k,w=1ll*w*W%MOD)
{
int X=P[j+k],Y=P[i+j+k]*1ll*w%MOD;
P[j+k]=(X+Y)%MOD;P[i+j+k]=(X-Y+MOD)%MOD;
}
}
}
if(opt==-1)
{
reverse(&P[1],&P[N]);
for(int i=0,inv=fpow(N,MOD-2);i<N;++i)P[i]=1ll*P[i]*inv%MOD;
}
}
}
int b[MAX];
int A[MAX],B[MAX],C[MAX],D[MAX],c[MAX];
void Inv(int *a,int *b,int len)
{
if(len==1){b[0]=fpow(a[0],MOD-2);return;}
Inv(a,b,len>>1);
for(int i=0;i<len;++i)A[i]=a[i],B[i]=b[i];
NTT::NTT(A,len<<1,1);NTT::NTT(B,len<<1,1);
for(int i=0;i<(len<<1);++i)A[i]=1ll*A[i]*B[i]%MOD*B[i]%MOD;
NTT::NTT(A,len<<1,-1);
for(int i=0;i<len;++i)b[i]=(b[i]+b[i])%MOD;
for(int i=0;i<len;++i)b[i]=(b[i]+MOD-A[i])%MOD;
for(int i=0;i<(len<<1);++i)A[i]=B[i]=0;
}
void Sqrt(int *a,int *b,int len)
{
if(len==1){b[0]=a[0];return;}
Sqrt(a,b,len>>1);
for(int i=0;i<=len;++i)C[i]=a[i];
Inv(b,D,len);
NTT::NTT(C,len<<1,1);NTT::NTT(D,len<<1,1);
for(int i=0;i<(len<<1);++i)D[i]=1ll*D[i]*C[i]%MOD;
NTT::NTT(D,len<<1,-1);
for(int i=0;i<len;++i)b[i]=1ll*(D[i]+b[i])%MOD*inv2%MOD;
for(int i=0;i<=(len<<1);++i)C[i]=D[i]=0;
}
int main()
{
n=read();m=read();inv2=fpow(2,MOD-2);
for(int i=1;i<=n;++i)++d[read()];
int N=1;while(N<=m)N<<=1;
for(int i=0;i<N;++i)d[i]=(-4*d[i]+MOD)%MOD;
++d[0];
Sqrt(d,c,N);
for(int i=0;i<N;++i)d[i]=0;
c[0]=(c[0]+1)%MOD;
Inv(c,d,N);
for(int i=0;i<=m;++i)d[i]=(d[i]+d[i])%MOD;
for(int i=1;i<=m;++i)printf("%d\n",d[i]);
return 0;
}
【BZOJ3625/CF438E】小朋友和二叉树(多项式求逆,多项式开方)的更多相关文章
- [BZOJ3625][CF438E]小朋友和二叉树
题面 Description 我们的小朋友很喜欢计算机科学,而且尤其喜欢二叉树. 考虑一个含有\(n\)个互异正整数的序列\(c_1,c_2,\ldots,c_n\).如果一棵带点权的有根二叉树满足其 ...
- FFT模板 生成函数 原根 多项式求逆 多项式开根
FFT #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> ...
- [BZOJ3625][CF438E]小朋友和二叉树 (多项式开根,求逆)
题面 题解 设多项式的第a项为权值和为a的二叉树个数,多项式的第a项表示是否为真,即 则,所以F是三个多项式的卷积,其中包括自己: ,1是F的常数项,即. 我们发现这是一个一元二次方程,可以求出,因为 ...
- 2019.01.01 bzoj3625:小朋友和二叉树(生成函数+多项式求逆+多项式开方)
传送门 codeforces传送门codeforces传送门codeforces传送门 生成函数好题. 卡场差评至今未过 题意简述:nnn个点的二叉树,每个点的权值KaTeX parse error: ...
- 【BZOJ3625】【codeforces438E】小朋友和二叉树 生成函数+多项式求逆+多项式开根
首先,我们构造一个函数$G(x)$,若存在$k∈C$,则$[x^k]G(x)=1$. 不妨设$F(x)$为最终答案的生成函数,则$[x^n]F(x)$即为权值为$n$的神犇二叉树个数. 不难推导出,$ ...
- [Codeforces438E][bzoj3625] 小朋友和二叉树 [多项式求逆+多项式开根]
题面 传送门 思路 首先,我们把这个输入的点的生成函数搞出来: $C=\sum_{i=0}^{lim}s_ix^i$ 其中$lim$为集合里面出现过的最大的数,$s_i$表示大小为$i$的数是否出现过 ...
- NTT+多项式求逆+多项式开方(BZOJ3625)
定义多项式$h(x)$的每一项系数$h_i$,为i在c[1]~c[n]中的出现次数. 定义多项式$f(x)$的每一项系数$f_i$,为权值为i的方案数. 通过简单的分析我们可以发现:$f(x)=\fr ...
- BZOJ3625 CF438E 小朋友与二叉树
心态崩了 不放传送门了 辣鸡bz 还是正经一点写一下题解= = 就是显然我们可以把权值写成生成函数形式g(0/1序列)来表示权值是否出现 然后f来表示总的方案数 可以列出 分别枚举左右子树和空树的情况 ...
- 【BZOJ3456】轩辕朗的城市规划 无向连通图计数 CDQ分治 FFT 多项式求逆 多项式ln
题解 分治FFT 设\(f_i\)为\(i\)个点组成的无向图个数,\(g_i\)为\(i\)个点组成的无向连通图个数 经过简单的推导(枚举\(1\)所在的连通块大小),有: \[ f_i=2^{\f ...
- bzoj 3456 城市规划——分治FFT / 多项式求逆 / 多项式求ln
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3456 分治FFT: 设 dp[ i ] 表示 i 个点时连通的方案数. 考虑算补集:连通的方 ...
随机推荐
- 二、Django用户认证之cookie和session
1.cookie原理 Cookie意为“甜饼”,是由W3C组织提出,最早由Netscape社区发展的一种机制.目前Cookie已经成为标准,所有的主流浏览器如IE.Netscape.Firefox.O ...
- 一步步带你配置IIS(包括错误分析)
今天趁着工作中的问题一下子来解决IIS配置 发布网站:点击VS发布网站 第一步:新建配置文件(我取名为webSite) : 第二步:选择发布方法并且选择把文件发布到哪里(比喻在D盘创建一个文件夹web ...
- Maven学习(六)-----Maven仓库的详细介绍
Maven仓库的详细介绍 在Maven中,任何一个依赖.插件或者项目构建的输出,都可以称之为构件.Maven在某个统一的位置存储所有项目的共享的构件,这个统一的位置,我们就称之为仓库.(仓库就是存放依 ...
- python 的入门
时光匆匆,大一的时间过的很快,从大一上学期学的c开始,就感觉出c的结构很复杂,但是不可否认,学习c和汇编等涉及到系统底层知识才会有可能开发出属于自己知识产权的东西,然而,python以其简约性,丰富的 ...
- Siki_Unity_2-3_UGUI_Unity4.6 UI Beta版本入门学习(未学)
Unity 2-3 UGUI Unity4.6 UI Beta版本入门学习(未学)
- PHP自定义生成二维码跳转地址
比较简单的一款PHP自定义生成二维码跳转地址,手机端微信扫码,自动跳转到定义好的链接.支持自定义生成二维码尺寸.间距等. 鼠标悬浮显示二维码弹出层,离开后消失.js实现,代码如下: $(fu ...
- Teaching Machines to Understand Us 让机器理解我们 之三 自然语言学习及深度学习的信仰
Language learning 自然语言学习 Facebook’s New York office is a three-minute stroll up Broadway from LeCun’ ...
- YAML 基础
YAML 基础 简介 对象 数组 常量 引用 1. 简介 YAML 是专门用来写配置文件的语言,非常简洁和强大! 它的基本语法规则有: 大小写敏感: 使用缩进表示层级关系: 缩进时不允许使用 Tab ...
- 启动tomcat时 一闪而过解决方法(2)
下面我先跟大家确认一下问题出现的前提条件(本机版本java:1.6.20,tomcat:6.0.32) 1)在eclipse里面启动tomcat时都是正常的. 2)在系统中配置了各种环境变量如下: J ...
- Thunder-Beta发布中间产物-2017秋-软件工程第十次作业
Thunder-Beta发布中间产物(WBS&PSP) WBS: 分解方式:按照「爱阅」阅读器的实施过程分解 使用工具:visio 2013 PSP: PSP 实际时间 Planning 计划 ...