2005: [Noi2010]能量采集

Time Limit: 10 Sec  Memory Limit: 552 MB
Submit: 4368  Solved: 2607
[Submit][Status][Discuss]

Description

栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。

Input

仅包含一行,为两个整数n和m。

Output

仅包含一个整数,表示总共产生的能量损失。

Sample Input

【样例输入1】
5 4
【样例输入2】
3 4

Sample Output

【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。

题解

这道题有多种解法。
首先对于一个点(x,y),它的贡献为2 * gcd(x,y) - 1,因为在(x,y)之前有gcd(x,y) - 1个点与它斜率相等【即在它与0的连线上】
这样我们的任务就变成了求∑∑gcd(i,j)
求gcd和有多种方法,比较简单的就是设f[i]表示gcd = i的个数,g[i]表示i | gcd的个数
那么显然g[i] = [n / i] * [m / i]
而f[i] = g[i] - (f[2 * i] + f[3 * i] + f[4 * i] + .....)
倒推即可求出
最后的gcdsum = ∑f[i] * i
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 100005,maxm = 100005,INF = 1000000000;
int n,m;
LL f[maxn];
int main()
{
cin>>n>>m;
if (n > m) swap(n,m);
LL ans = 0;
for (int i = n; i > 0; i--){
f[i] = (LL)(n / i) * (m / i);
for (int k = i + i; k <= n; k += i)
f[i] -= f[k];
ans += f[i] * i;
}
cout<<2 * ans - (LL)n * m<<endl;
return 0;
}

BZOJ2005 能量汇集 【gcd求和】的更多相关文章

  1. bzoj2005 能量采集 gcd 容斥

    ans = sigma_x(sigma_y(gcd(x,y) * 2 - 1)),1<=x<=n,1<=y<=m 枚举x,y,O(nmlogn),超时 换个角度,枚举d = g ...

  2. Bzoj-2005 能量采集 gcd,递推

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2005 题意:题目转换后的模型就是求Σ(gcd(x,y)), 1<=x<=n, ...

  3. bzoj2005 能量采集 莫比乌斯或者普通容斥

    /** 题目:bzoj2005 能量采集 链接:https://vjudge.net/contest/178455#problem/F 题意:栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可 ...

  4. [NOI2010][bzoj2005] 能量采集 [欧拉函数+分块前缀和优化]

    题面: 传送门 思路: 稍微转化一下,可以发现,每个植物到原点连线上植物的数量,等于gcd(x,y)-1,其中xy是植物的横纵坐标 那么我们实际上就是要求2*sigma(gcd(x,y))-n*m了 ...

  5. 【bzoj2005】 [Noi2010]能量采集 数学结论(gcd)

    [bzoj2005] [Noi2010]能量采集 Time Limit: 1 Sec  Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnli ...

  6. 【BZOJ2005】【NOI2010】能量采集(莫比乌斯反演,容斥原理)

    [BZOJ2005][NOI2010]能量采集(莫比乌斯反演,容斥原理) 题面 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量 ...

  7. bzoj2005: [Noi2010]能量采集

    lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) *  2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...

  8. 数学(动态规划,GCD):COGS 469. [NOI2010]能量采集

    能量采集 ★★☆   输入文件:energy2010.in   输出文件:energy2010.out   简单对比 时间限制:1 s   内存限制:512 MB [问题描述] 栋栋有一块长方形的地, ...

  9. BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】

    BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...

随机推荐

  1. equals和==方法比较(二)--Long中equals源码分析

    接上篇,分析equals方法在Long包装类中的重写,其他类及我们自定义的类,同样可以根据需要重新equals方法. equals方法定义 equals方法是Object类中的方法,java中所有的对 ...

  2. 「Leetcode」975. Odd Even Jump(Java)

    分析 注意到跳跃的方向是一致的,所以我们需要维护一个数接下来跳到哪里去的问题.换句话说,就是对于一个数\(A_i\),比它大的最小值\(A_j\)是谁?或者反过来. 这里有两种方案,一种是单调栈,简单 ...

  3. 在spring boot上基于maven使用redis——批量匹配并删除 (二)

    一.背景 在搭建了项目之后,由于需要通过触发动作,并删除redis中多个key. 二.思路 在查询了jedis并没有类似的删除方法之后,事情就变得清晰起来.完成上述任务,分为两个步骤,第一,找到要删除 ...

  4. JavaScript的数组和字符串应用

    函数search实现在一个已排序的数字类型数组中查找指定数字的功能. 可以采用数组的内置方法,二分查找法等进行操作 //方法一 var search = function(arr,dst){ var ...

  5. Linux大全

    Linux 基本指令介紹   一定要先學會的指令:ls, more, cd, pwd, rpm, ifconfig, find 登入與登出(開機與關機):telnet, login, exit, sh ...

  6. Python Web部署方式全汇总

    学过PHP的都了解,php的正式环境部署非常简单,改几个文件就OK,用FastCgi方式也是分分钟的事情.相比起来,Python在web应用上的部署就繁杂的多,主要是工具繁多,主流服务器支持不足. 在 ...

  7. 袋鼠云旗下新公司云掣科技启航,深耕云MSP业务助推企业数字化转型

    1983年3月15日,国际消费者联盟组织将3月15日确立为国际消费者权益日. 2019年3月15日,袋鼠云举办三周年年会. 一生二,二生三,三生万物.植树节后,万物生长. 年会现场,袋鼠云宣布成立新公 ...

  8. linux ——使用find如何快速替换所有相同参数

    在生成环境上有时候需要大规模修改某一配置里的参数,但是该参数存在多个地方,比如IP地址 端口 项目名等,特别是项目名称混乱想统一 find  /项目地址 -type f |xargs grep &qu ...

  9. JAVA学习笔记--简介几个常见关键字static、final、this、super

    一.static static(静态的),可以放在类.方法.字段之前. 通常,当创建类时,就是在描述那个类的外观与行为.除非用 new 创建那个类的对象,否则,实际上并未获得任何对象.执行 new 来 ...

  10. Hackerank-Array-NewYearChaos

    题目背景描述 新年第一天,N 个人排队坐过山车.每个人穿有带编号的衣服 \([1, 2, 3, ...]\). 因为排队时间太久,有人发现给前面相邻的人喂一颗糖,就可以和他交换位置,而每人手里只有两颗 ...