引理: EK算法每次增广使所有顶点$v\in V-\{s,t\}$到$s$的最短距离$d[v]$增大.

采用反证法, 假设存在一个点$v\in V-\{s,t\}$, 使得$d'[v]< d[v]$.

取$v$为第一个使最短距离减小的点, 设增广后的图$G'$中路径$s\leadsto u \rightarrow v$为$s$到$v$的最短路

因此可以得到

$$d[u]=d[v]-1, d'[u]\ge d[u]$$

那么显然边$(u,v) \notin E$, 因为若$(u,v) \in E$, 则有

$$d[v]\le d[u]+1 \le d'[u]+1 = d'[v]$$

与假设矛盾.

故EK算法一定是增加了流$f(v,u)$, 即边$(v,u)$在$G$的最短路上, 固有

$$d[v]=d[u]-1\le d'[u]-1=d'[v]-2$$

与假设矛盾, 故引理成立.

定理: EK算法最多增广次数为$O(VE)$.

若增广路$p$的残留容量等于边$(u,v)$的残留容量, 则称边$(u,v)$是增广路$p$的关键边, 下面用引理证明每条边最多做关键边$\frac{|V|}{2}-1$次.

对于关键边$(u,v)$, 由于$(u,v)$在最短路上, 有

$$d[v]=d[u]+1$$

而增广后, $(u,v)$将从$G$中消失, 重新出现的条件是$(v,u)$出现在增广路上.

则有

$$d'[u]=d'[v]+1$$

由引理知道

$$d'[v]\ge d[v]$$

故有

$$d'[u]\ge d[v]+1=d[u]+2$$

所以每次出现至少会使最短距离$+2$, 而其距离最大为$|V|-2$, 所以每条边最多做关键边$\frac{|V|}{2}-1$次, 总的增广次数就为$O(VE)$.

所以采用BFS进行增广的话, EK算法将达到复杂度$O(VE^2)$

EK算法复杂度分析的更多相关文章

  1. 《数据结构与算法之美》 <02>复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度?

    上一节,我们讲了复杂度的大 O 表示法和几个分析技巧,还举了一些常见复杂度分析的例子,比如 O(1).O(logn).O(n).O(nlogn) 复杂度分析.掌握了这些内容,对于复杂度分析这个知识点, ...

  2. 轮廓问题/Outline Problem-->改进的算法及时间复杂度分析

    前面写过一篇关于轮廓算法的文章,是把合并建筑和合并轮廓是分开对待的,并且为了使轮廓合并的时候算法简单,对x坐标使用了double类型,然后对整形的x坐标数据进行合并.这样做是为了使得需找拐点的算法容易 ...

  3. 八大排序算法详解(动图演示 思路分析 实例代码java 复杂度分析 适用场景)

    一.分类 1.内部排序和外部排序 内部排序:待排序记录存放在计算机随机存储器中(说简单点,就是内存)进行的排序过程. 外部排序:待排序记录的数量很大,以致于内存不能一次容纳全部记录,所以在排序过程中需 ...

  4. 八大排序算法——希尔(shell)排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序:随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止. 简单插 ...

  5. 八大排序算法——插入排序(动图演示 思路分析 实例代码java 复杂度分析)

    一.动图演示 二.思路分析 例如从小到大排序: 1.  从第二位开始遍历, 2.  当前数(第一趟是第二位数)与前面的数依次比较,如果前面的数大于当前数,则将这个数放在当前数的位置上,当前数的下标-1 ...

  6. 重拾算法之复杂度分析(大O表示法)

    .katex { display: block; text-align: center; white-space: nowrap; } .katex-display > .katex > ...

  7. 《数据结构与算法之美》 <01>复杂度分析(上):如何分析、统计算法的执行效率和资源消耗?

    我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间.所以,执行效率是算法一个非常重要的考量指标. 那如何来衡量你编写的算法代码的执行效率呢?这里 ...

  8. 【数据结构&算法】02-复杂度分析之执行效率和资源消耗

    目录 前言 复杂度 分析方法 大 O 复杂度表示法 例子-评估累加和的各种算法执行效率 算法 1(for 循环): 算法 2(嵌套 for 循环): 大 O 表示 时间复杂度分析 关注执行最多的一段代 ...

  9. 相似度分析,循环读入文件(加入了HanLP,算法第四版的库)

    相似度分析的,其中的分词可以采用HanLP即可: http://www.open-open.com/lib/view/open1421978002609.htm /****************** ...

随机推荐

  1. 170515、mybatis批量操作

    //Java代码 public void batchAdd(){ SqlSession sqlSession = SqlSessionFactoryUtil.getSqlSession(); Stud ...

  2. Visual Studio的“Waiting for a required operation to complete...”问题

    自从使用Visual Studio 2013之后,多次遇到这个恼人的“Waiting for a required operation to complete...”问题. 问题发生于在Visual ...

  3. Uva10917 Walk Through the Forest

    题目链接:https://vjudge.net/problem/UVA-10917 题目意思:Jimmy下班回家要闯过一下森林,劳累一天后在森林中散步是非常惬意的事,所以他打算每天沿着一条不同的路径回 ...

  4. java观察者(Observer)模式

    观察者模式:     试想,在电子商务网站上,一个用户看中了一件一份,但是当时衣服的价格太贵,你需要将衣服收藏,以便等衣服降价时自动通知该用户.这里就是典型的观察模式的例子.     1.观察者模式的 ...

  5. 第1章 1.7计算机网络概述--理解OSI参考模型分层思想

    OSI七层模型,知识参考理论. 分层标准的好处: 1.不同的硬件生产商生产的硬件产品,连通后就可以用了,有助于互联网发展. 2.分层,分成不同的模块,某一层的变化,不会影响其他层.如:IPv4改为IP ...

  6. mysql 数据操作 单表查询 group by 分组 目录

    mysql 数据操作 单表查询 group by 介绍 mysql 数据操作 单表查询 group by 聚合函数 mysql 数据操作 单表查询 group by 聚合函数 没有group by情况 ...

  7. soapUI-DataSource

    1.1.1.1 概述 - 数据源   Option Description   Properties DataSource属性表   Toolbar DataSource工具栏   Configura ...

  8. 排序问题Java

    package zhuzhuangtu; import java.util.*; import java.io.*; public class Main{ public static void mai ...

  9. scp命令简单应用

    实例1:从远处复制文件到本地目录 $scp root@10.6.159.147:/opt/soft/demo.tar /opt/soft/ 说明: 从10.6.159.147机器上的/opt/soft ...

  10. 【转载】package-info

    本文是转载,原文地址:http://strong-life-126-com.iteye.com/blog/806246 package-info.java对于经常使用外部包的程序员来说应该是熟悉陌生人 ...