BZOJ1079:[SCOI2008]着色方案(DP)
Description
有n个木块排成一行,从左到右依次编号为1~n。你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块。
所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n。相邻两个木块涂相同色显得很难看,所以你希望统计任意两
个相邻木块颜色不同的着色方案。
Input
第一行为一个正整数k,第二行包含k个整数c1, c2, ... , ck。
Output
输出一个整数,即方案总数模1,000,000,007的结果。
Sample Input
1 2 3
Sample Output
HINT
100%的数据满足:1 <= k <= 15, 1 <= ci <= 5
Solution
思路非常妙,类似王八(划掉)乌龟棋
用f[a][b][c][d][e][last]
表示还能涂1\2\3\4\5块的颜色各有a\b\c\d\e种,上一次用的是能涂last块的颜色
记忆化搜索即可,看代码就很容易明白
last那一部分,若上一个用的是能涂三种颜色的时候,这一次选两种颜色的时候就有且只有一种能选两种的颜色与前一个冲突
所以统计答案的时候减去重复的那部分就好了。
Code
#include<iostream>
#include<cstring>
#include<cstdio>
#define MOD (1000000007)
using namespace std;
int K,N,x,c[];
long long f[][][][][][]; long long dp(int a,int b,int c,int d,int e,int last)
{
if ((a|b|c|d|e)==) return ;
if (f[a][b][c][d][e][last]) return f[a][b][c][d][e][last];
long long now=;
if (a) now+=(a-(last==))*dp(a-,b,c,d,e,),now%=MOD;
if (b) now+=(b-(last==))*dp(a+,b-,c,d,e,),now%=MOD;
if (c) now+=(c-(last==))*dp(a,b+,c-,d,e,),now%=MOD;
if (d) now+=(d-(last==))*dp(a,b,c+,d-,e,),now%=MOD;
if (e) now+=e*dp(a,b,c,d+,e-,),now%=MOD;
f[a][b][c][d][e][last]=now;
return now;
} int main()
{
scanf("%d",&K);
for (int i=;i<=K;++i)
scanf("%d",&x),c[x]++;
printf("%lld",dp(c[],c[],c[],c[],c[],));
}
BZOJ1079:[SCOI2008]着色方案(DP)的更多相关文章
- bzoj 1079: [SCOI2008]着色方案 DP
1079: [SCOI2008]着色方案 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 803 Solved: 512[Submit][Status ...
- BZOJ1079 [SCOI2008]着色方案 【dp记忆化搜索】
题目 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难看 ...
- BZOJ1079 [SCOI2008]着色方案 动态规划
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1079 题目概括 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的 ...
- [luogu2476][bzoj1079][SCOI2008]着色方案【动态规划】
题目描述 有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块.所有油漆刚好足够涂满所有木块,即c1+c2+-+ck=n.相邻两个木块涂相同色显得很难 ...
- BZOJ1079: [SCOI2008]着色方案 (记忆化搜索)
题意:有n个木块排成一行,从左到右依次编号为1~n.你有k种颜色的油漆,其中第i种颜色的油漆足够涂ci个木块. 所有油漆刚好足够涂满所有木块,即c1+c2+...+ck=n.相邻两个木块涂相同色显得很 ...
- 2018.10.20 bzoj1079: [SCOI2008]着色方案(多维dp)
传送门 dp妙题. f[a][b][c][d][e][last]f[a][b][c][d][e][last]f[a][b][c][d][e][last]表示还剩下aaa个可以用一次的,还剩下bbb个可 ...
- BZOJ1079 [SCOI2008]着色方案[组合计数DP]
$有a_{1}个1,a_{2}个2,...,a_{n}个n(n<=15,a_{n}<=5),求排成一列相邻位不相同的方案数.$ 关于这题的教训记录: 学会对于复杂的影响分开计,善于发现整体 ...
- bzoj1079: [SCOI2008]着色方案
dp.以上次染色时用的颜色的数量和每种数量所含有的颜色作状态. #include<cstdio> #include<algorithm> #include<cstring ...
- 【记忆化搜索】bzoj1079 [SCOI2008]着色方案
#include<cstring> #include<cstdio> using namespace std; #define MOD 1000000007 typedef l ...
随机推荐
- FusionChart实现柱状图、饼状图的动态数据显示
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- jQuery基础---动画效果
内容摘要: 1.显示.隐藏 2.滑动.卷动 3.淡入.淡出 4.自定义动画 5.列队动画方法 6.动画相关方法 7.动画全局属性 发文不易,转载请注明出处~ 一.显示.隐藏 jQuery 中显示方法 ...
- groovy动态类型--能力式设计
动态类型 动态类型中的类型是在运行时推断的,方法及其参数也是在运行时检查的. 能力式设计 被称作鸭子模式:他有这么一个观点:如果它走路像鸭子,叫起来也像鸭子,那么他就是一只鸭子. 契约式设计 相当于J ...
- 【SSH网上商城项目实战04】EasyUI菜单的实现
转自:https://blog.csdn.net/eson_15/article/details/51297705 上一节我们使用EasyUI搭建了后台页面的框架,这一节我们主要使用EasyUI技术简 ...
- oracle数据库的安装与连接关键点
一.window xp系统上安装Oracle Database 10G 解锁Scott.Hr账号并重置口令 远程连接数oracle数据库地址 二.在Mac系统上使用Navicat远程连接oracle数 ...
- IDEA使用maven建web项目示例
运行环境:OSX-10.13.3. IDEA-2017.3.3. maven-3.5.2 步骤1:选择maven-webapp模板新建web项目 步骤2:设置项目GroupId等 需从网上下载相关构件 ...
- DB2 Metadata
http://www.devart.com/dotconnect/db2/docs/MetaData.html Instead of specifying the metadata collectio ...
- PHP学习笔记(一) ---- PHP简介以及基本语法
PHP 一.PHP 简介 PHP(外文名:PHP: Hypertext Preprocessor,中文名:“超文本预处理器”)是一种通用开源脚本语言.语法吸收了C语言.Java和Perl的特点, 利于 ...
- PHP在foreach中对$value赋值无效,应该用 ‘键’ 或者 &$value的形式
首先我们看下这段代码: foreach ($data as$value) { $value['name'] = 'Hehe'; } $data中原始的数据为: array(1) { [0] => ...
- JS 对html标签的属性的干预以及JS 对CSS 样式表属性的干预
-任何标签的任何属性都可以修改! -HTML里是怎么写, JS就怎么写 以下是一段js 作用于 css 的 href的 代码 <link id="l1" rel= ...