分布式锁实践(二)-ZooKeeper实现总结
写在最前面
前几周写了篇 利用Redis实现分布式锁 ,今天简单总结下ZooKeeper实现分布式锁的过程。其实生产上我只用过Redis或者数据库的方式,之前还真没了解过ZooKeeper怎么实现分布式锁。这周简单写了个小Demo,更坚定了我继续使用Redis的信心了。
ZooKeeper分布式锁的实现原理

在分布式解决方案中,Zookeeper是一个分布式协调工具。当多个JVM客户端,同时在ZooKeeper上创建相同的一个临时节点,因为临时节点路径是保证唯一,只要谁能够创建节点成功,谁就能够获取到锁。没有创建成功节点,就会进行等待,当释放锁的时候,采用事件通知给客户端重新获取锁资源。如果请求超时直接返回给客户端超时,重新请求即可。
代码实现
为了更好的展现效果,我这里设置每个线程请求需要1s,请求超时时间为30s。
首先我们先写一个测试类,模拟多线程多客户端请求的情况:
public class ZkLockTest implements Runnable {
private ZkLock zkLock = new ZkDistributedLock();
public void run() {
try {
if (zkLock.getLock((long)30000,null)) {
System.out.println("线程:" + Thread.currentThread().getName() + ",抢购成功:" + System.currentTimeMillis());
} else {
System.out.println("线程:" + Thread.currentThread().getName() + ",抢购超时失败请重试:" + System.currentTimeMillis());
}
Thread.sleep(1000);
} catch (Exception e) {
} finally {
zkLock.unLock();
}
}
public static void main(String[] args) {
System.out.println("zk分布式锁开始。。");
for (int i = 0; i < 100; i++) {
new Thread(new ZkLockTest()).start();
}
}
}
模拟100个线程,去同时争夺锁。当然上述写法 100个线程不会同时启动,如果需要的话可以用信号量的形式控制。
其次,写一个锁的接口
public interface ZkLock {
// 获取锁
Boolean getLock(Long acquireTimeout,Long endTime);
// 释放锁
void unLock();
}
这里我定义了两个接口,分别对应获取锁和释放锁。
在获取锁中有两个参数,含义分别为锁超时时间和最终计算的超时时间,具体看下文代码就懂了。
public class ZkDistributedLock implements ZkLock {
// 集群连接地址
private String CONNECTION = "127.0.0.1:2181";
// zk客户端连接
private ZkClient zkClient = new ZkClient(CONNECTION);
// path路径
private String lockPath = "/lock";
private CountDownLatch countDownLatch;
//请求设置的超时时间:acquireTimeout 毫秒。最终超时时间endTime
public Boolean getLock(Long acquireTimeout,Long endTime) {
Boolean lock = false;
if (endTime == null) {
//等待超时时间
endTime = System.currentTimeMillis() + acquireTimeout;
}
if (tryLock()) {
System.out.println("####获取锁成功######");
lock = true;
} else {
if (waitLock(endTime)) {
if (getLock(null,endTime)) {
lock = true;
}
}
}
return lock;
}
public void unLock() {
if (zkClient != null) {
System.out.println("#######释放锁#########");
zkClient.close();
}
}
private boolean tryLock() {
try {
zkClient.createEphemeral(lockPath);
return true;
} catch (Exception e) {
return false;
}
}
private Boolean waitLock(Long endTime) {
// System.out.println("进入等待");
// 使用zk临时事件监听
IZkDataListener iZkDataListener = null;
try {
// 使用zk临时事件监听
iZkDataListener = new IZkDataListener() {
public void handleDataDeleted(String path) throws Exception {
if (countDownLatch != null) {
countDownLatch.countDown();
}
}
public void handleDataChange(String arg0, Object arg1) throws Exception {
}
};
// 注册事件通知
zkClient.subscribeDataChanges(lockPath, iZkDataListener);
if (System.currentTimeMillis() < endTime) {
if (zkClient.exists(lockPath)) {
countDownLatch = new CountDownLatch(1);
try {
countDownLatch.await();
return true;
} catch (Exception e) {
}
} else {
return true;
}
} else {
System.out.println("超时返回");
}
} catch (Exception e) {
} finally {
// 监听完毕后,移除事件通知
zkClient.unsubscribeDataChanges(lockPath, iZkDataListener);
}
return false;
}
}
这个类是我实现zk锁的核心类,和上文原理图中类似。首先用户请求的时候需要获取锁,第一个争夺到锁的用户执行相关逻辑后释放锁,在这个过程中如果程序出错断开连接,因为临时节点的缘故,节点也会自动删除释放锁的。
另外就是其他争夺锁失败的用户,我这里设置了一定的等待时间,当在时间内原锁释放,还是可以重新去获取锁的。这里要说下锁释放的监听,在原生的zookeeper中,使用watcher需要每次先注册,而且使用一次就需要注册一次。而在zkClient中,没有注册watcher的必要,而是引入了listener的概念,即只要client在某一个节点中注册了listener,只要服务端发生变化,就会通知当前注册listener的客户端。我这里使用的是IZkDataListener,这个类是zkClient提供的一个接口,它可以在当前节点数据内容或版本发生变化或者当前节点被删除时触发。
触发后我们就可以重新去争夺锁,当再次争夺失败进入等待时会再次检测当前请求是否超时。
下面我们来看下上述代码的实现效果:
zk分布式锁开始。。
####获取锁成功######
线程:Thread-3,抢购成功:1544183770509
#######释放锁#########
####获取锁成功######
线程:Thread-81,抢购成功:1544183771555
#######释放锁######### ......... 超时返回
线程:Thread-11,抢购超时失败请重试:1544183800677
超时返回
线程:Thread-1,抢购超时失败请重试:1544183800681
#######释放锁#########
#######释放锁#########
####获取锁成功######
线程:Thread-49,抢购成功:1544183801710
超时返回
线程:Thread-25,抢购超时失败请重试:1544183801729
超时返回
#######释放锁#########
#######释放锁#########
释放锁说的可能并不准确,应该说是关闭连接,有些线程实际上是没有得到锁的。
简单尝试了下zk实现分布式锁的方式,当然上述代码如果应用到生产中肯定问题还是不少的,因为兴趣点不在这,就不仔细研究了。简单来说,相比其他方式实现步骤更为复杂,感觉更容易出问题。
总结
经过三种方式的应用和简单实践,总结实现分布式锁三种方式的优缺点如下
1、数据库实现:
优点,实现简单只是for update的显示加锁。缺点,性能问题较大,而且本身系统在设计时是需要尽量减轻数据库的压力的。
2、Redis实现:
优点:一般互联网项目都会集成,本身是nosql数据库,缓存实现简单,高并发应付自如,同时新版的Jedis完美解决了以往程序出错,未设置超时时间死锁的问题。
缺点:网络问题可能会引起锁删除失败,超时时间有一定的延迟。
3、ZooKeeper实现:
优点:Zookeeper临时节点先天可控的有效期设置,避免了程序引发的死锁问题
缺点:实现过于繁杂,相比其他两种写法更容易出问题,另外还需要单独维护zk。
结论:
我个人更为推荐Redis的实现方式,实现简单,性能也比较好,同时引入集群可以提高可用性。Jedis多参的设置方式也较好的保证了有效期的控制和死锁的问题。
分布式锁实践(二)-ZooKeeper实现总结的更多相关文章
- Springboot分布式锁实践(redis)
springboot2本地锁实践一文中提到用Guava Cache实现锁机制,但在集群中就行不通了,所以我们还一般要借助类似Redis.ZooKeeper 之类的中间件实现分布式锁,下面我们将利用自定 ...
- 分布式锁实践(一)-Redis编程实现总结
写在最前面 我在之前总结幂等性的时候,写过一种分布式锁的实现,可惜当时没有真正应用过,着实的心虚啊.正好这段时间对这部分实践了一下,也算是对之前填坑了. 分布式锁按照网上的结论,大致分为三种:1.数据 ...
- 基于redis 实现分布式锁(二)
https://blog.csdn.net/xiaolyuh123/article/details/78551345 分布式锁的解决方式 基于数据库表做乐观锁,用于分布式锁.(适用于小并发) 使用me ...
- 分布式锁tair redis zookeeper,安全性
tair分布式锁实现:https://yq.aliyun.com/articles/58928 redis分布式锁:https://www.cnblogs.com/jianwei-dai/p/6137 ...
- 分布式锁之一:zookeeper分布式锁1
zookeeper集群的每个节点的数据都是一致的, 那么我们可以通过这些节点来作为锁的标志. 首先给锁设置一下API, 至少要包含, lock(锁住), unlock(解锁), isLocked(是否 ...
- redis分布式锁实践
分布式锁在多实例部署,分布式系统中经常会使用到,这是因为基于jvm的锁无法满足多实例中锁的需求,本篇将讲下redis如何通过Lua脚本实现分布式锁,不同于网上的redission,完全是手动实现的 我 ...
- Redisson实现分布式锁(二)
本次基于注解+AOP实现分布式锁(招式与前文基于注解切换多数据源相同),话不多说,直接上样例: 首先自定义注解:设计时需要考虑锁的一般属性:keys,最大等待时间,超时时间,时间单位. package ...
- 分布式锁之二:zookeeper分布式锁2
示例: package com.util; import org.slf4j.Logger; import org.slf4j.LoggerFactory; import org.apache.zoo ...
- zookeeper — 实现分布式锁
一.前言 在之前的文章中介绍过分布式锁的特点和利用Redis实现简单的分布式锁.但是分布式锁的实现还有很多其他方式,但是万变不离其宗,始终遵循一个特点:同一时刻只能有一个操作获取.这篇文章主要介绍如何 ...
随机推荐
- python 字典元素值的乘积
my_dict = {,,} result= for key in my_dict: result=result * my_dict[key] print(result)
- IE8 JSON is not defined
问题原因: 昨天遇到了一个问题.就是用ajax从后台查询数据时,返回信息无法显示,经过提示发现是IE控制台提示: JSON is not defined 错误. 而且这个问题在本人自己的电脑上是不存在 ...
- Java网络编程学习A轮_06_NIO入门
参考资料: 老外写的教程,很适合入门:http://tutorials.jenkov.com/java-nio/index.html 上面教程的译文:http://ifeve.com/overview ...
- 网络编程 单机最大tcp连接数
在tcp应用中,server事先在某个固定端口监听,client主动发起连接,经过三路握手后建立tcp连接.那么对单机,其最大并发tcp连接数是多少? 如何标识一个TCP连接 在确定最大连接数之前,先 ...
- git入门篇
git是一个分布式版本管理软件,总之是一个软件. github是一个代码托管平台,总之是一个网站. github这个网站使用git这个版本管理软件来托管代码. 相当于本地.公司服务器.Github网站 ...
- Android 之WebView实现下拉刷新和其他相关刷新功能
最近项目中需要用到WebView下拉刷新的功能,经过查找资料终于完成了此功能,现在拿出来和大家分享一下.希望对大家有所帮助. 效果如下图: 代码: activity.xml <?xml ve ...
- 时间序列挖掘-预测算法-三次指数平滑法(Holt-Winters)——三次指数平滑算法可以很好的保存时间序列数据的趋势和季节性信息
from:http://www.cnblogs.com/kemaswill/archive/2013/04/01/2993583.html 在时间序列中,我们需要基于该时间序列当前已有的数据来预测其在 ...
- 第一个mpvue小程序开发总结
前言 说起小程序,其实在去年我都还只试着照着官方文档写过demo的,不过现在这家公司小程序做得比较多,我来之后也参与了几个小程序的开发了,最开始那几个是用的wepy,最近一个开始转用mpvue开发,最 ...
- iOS 地图 通过经纬度计算两点间距离
- (double)calculateStart:(CLLocationCoordinate2D)start end:(CLLocationCoordinate2D)end { ; double st ...
- Jenkins无法读取覆盖率报告的解决方法
报错信息如下: log 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 coverage-report: [mkdir] Cre ...