Time Limit:1000MS     Memory Limit:131072KB     64bit IO Format:%lld & %llu

Description

Ocean从影视城回来后,吃了一个放大果实(恶魔果实的一种),高呼:“海贼王に、俺はなる!”

Ocean每使用一次能力,就可以将一个物品的价值放大$x$倍(原价值乘以$x$)。 
但是哪有这么好的事情? 
物品的价值是有限度的,姑且认为物品的价值上界为$M$。 
如果经过放大后物品的价值大于或者等于$M$,那么该物品价值将恒定以$M$的值减少,直到小于$M$为止。 
比如价值为$19,M = 6$:要减少$3$次$M$,即$19 - 6 = 13,13 - 6 = 7,7 - 6 = 1 < 6。$

假设物品初始的价值为$1$,Ocean会对该物品使用$N$次能力。 
他想知道经过$N$次放大之后,物品的价值是否大于$Y$?

Input

第一行输入一个整数$T$,代表有$T$组测试数据。 
每组数据依次输入四个整数$x,N,M,Y,$分别代表上面提到的信息。

注:$1 <= T <= 100000,1 <= x, N <= 10^9,1 <= M <= 10^9,|Y| <= 2 * 10^9。$

Output

若最后物品的价值大于$Y$请输出"YES",反之输出"NO"。(输出结果不带引号)

Sample Input

2
2 3 5 4
3 10 7 3

Sample Output

NO
YES

Hint

对第一组测试数据,

第一次放大后物品价值为$2,2 < 5,$不减少。

第二次放大后物品价值为$4,4 < 5,$不减少。

第三次放大后物品价值为$8,8 > 5,$每次减少$5$,则$8 - 5 = 3 < 5$合法。

最后价值为$3,3 < 4。$

真的不懂当时自己明明知道方法,但是就是提交不上去,还是自己的基础知识没有掌握好。同余定理没有掌握好。

  

 #include<stdio.h>

 int main()
{
int T;
scanf("%d",&T);
while(T--)
{
long long t,x;
int n,m,y;
t=;
scanf("%lld%d%d%d",&x,&n,&m,&y);
while(n!=)
{
if(n%) //这里的快速幂知识,和我记的模板并不一样,他是
t=(t*x)%m; //经过了自己的理解了的模板,我现在还没有到这一步
x=(x*x)%m;    
n=n/; //用到了同余定理
}
if(t>y) printf("YES\n");
else printf("NO\n");
}
return ;
}

同余定理的另一种表述方式

如果经过放大后物品的价值大于或者等于$M$,那么该物品价值将恒定以$M$的值减少,直到小于$M$为止。 
比如价值为$19,M = 6$:要减少$3$次$M$,即$19 - 6 = 13,13 - 6 = 7,7 - 6 = 1 < 6。$

J - Judge(快速幂)(同余定理)的更多相关文章

  1. 洛谷 P1226 【模板】快速幂||取余运算

    题目链接 https://www.luogu.org/problemnew/show/P1226 题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 ...

  2. hdu1061Rightmost Digit(快速幂取余)

    Rightmost Digit Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)T ...

  3. LightOJ - 1282 - Leading and Trailing(数学技巧,快速幂取余)

    链接: https://vjudge.net/problem/LightOJ-1282 题意: You are given two integers: n and k, your task is to ...

  4. 洛谷P1226 【模板】快速幂||取余运算

    题目描述 输入b,p,k的值,求b^p mod k的值.其中b,p,k*k为长整型数. 输入输出格式 输入格式: 三个整数b,p,k. 输出格式: 输出“b^p mod k=s” s为运算结果 S1: ...

  5. LuoguP1226 【模板】快速幂||取余运算

    题目链接:https://www.luogu.org/problemnew/show/P1226 第一次学快速幂,将别人对快速幂原理的解释简要概括一下: 计算a^b时,直接乘的话计算次数为b,而快速幂 ...

  6. hdu4767_Bell_矩阵快速幂+中国剩余定理

    2013长春赛区网络赛的1009题 比赛的时候这道题英勇的挂掉了,原因是写错了一个系数,有时候粗心比脑残更可怕 本题是关于Bell数,关于Bell数的详情请见维基:http://en.wikipedi ...

  7. 题解 P1226 【【模板】快速幂||取余运算】

    1.题目分析 原题 本题在于快速幂的使用,以及对long long的应用问题. 2.解题思路 快速幂 求幂常见用法: int pow(int a,int b) { int ans; for(int i ...

  8. [每日一题2020.06.15]P1226 【模板】快速幂取余运算

    我是题目 快速幂就是快速求 \(a^b\)的一种算法 快速幂 思想 : 比如我要求 \(6^9\) 首先将幂转化为二进制形式 : \[6^9 = 6^{1001} \tag{1} \] 可以得到 : ...

  9. 【模板】快速幂&取余运算

    输入\(b\),\(p\),\(k\)的值,求\(b^p mod k\)的值.其中\(b\),\(p\),\(k^2\)为长整型数. 1.普通做法 \(print\) \(pow(b,p)\)\(mo ...

随机推荐

  1. C# JSON 序列化

    1.JavaScriptSerializer System.Web.Extensions.dll System.Web.Script.Serialization命名空间 Serialize Deser ...

  2. 添加自己的discuz 的积分策略

    在参考了网上的一些文章和discuzx开发手册,开始操作:1.在数据库表pre_common_credit_rule增加一条记录,rulename填“填写推荐人”,action填“txtjr”(跟下面 ...

  3. LUA表 pairs, ipairs输出顺序问题

    t = { [] = , [] = , [] = , [] = , [] = , [] = , [] = , [] = , [] = -, } t1 = { , , , , } table.sort( ...

  4. Python与Go快速排序

    #!/usr/bin/env python # -*- coding: utf-8 -*- # 快速排序 # 时间复杂度 O(n lgn)-- O(n^2) def quick_sort(array) ...

  5. LevelDB Compaction操作

    [LevelDB Compaction操作] 对于LevelDb来说,写入记录操作很简单,删除记录仅仅写入一个删除标记就算完事,但是读取记录比较复杂,需要在内存以及各个层级文件中依照新鲜程度依次查找, ...

  6. python大规模数据处理技巧之一:数据常用操作

    面对读取上G的数据,python不能像做简单代码验证那样随意,必须考虑到相应的代码的实现形式将对效率的影响.如下所示,对pandas对象的行计数实现方式不同,运行的效率差别非常大.虽然时间看起来都微不 ...

  7. gatttool的使用

    1.使能hci接口 # hciconfig hci0 up 2.使用hcitool搜索BLE设备 # hcitool lescan LE Scan ...D0:39:72:BE:D2:26 (unkn ...

  8. ToList和ToDataTable(其中也有反射的知识)

    using System;using System.Collections.Generic;using System.Data;using System.Linq;using System.Refle ...

  9. 利用NotePad++ 格式化代码(格式标准化) worldsing

    在阅读别人的代码时往往会遇到格式很乱,阅读起来很费劲,如果手动改很容易出错,而且很费时间,这时可以借助一些专业的编辑器来格式化代码,NotePad++是一个轻量级的代码编辑器,占用内存少,运行速度快, ...

  10. tpshop使用中遇到的问题

    1.短信配置里:商家发货时是否给客户发短信  配置了 开启   如果购买者个人资料里的电话没填写,商家点击发货时, 程序会挂掉 解决方法:修改application\common\logic\SmsL ...