Halcon 学习笔记3 仿射变换
像素的减少
开运算(较少)
腐蚀(去除更多)
对灰度图像的开运算或腐蚀 相当于将灰度图像变暗
像素增加
闭运算(较少)
膨胀(较多)
对灰度图像的闭运算或膨胀 相当于将灰度图像变亮
仿射变换

另外一种仿射变换
* This example demonstrates an application from the pharmaceutical
* industry. The task is to check the content of automatically filled
* blisters. The first image (reference) is used to locate the chambers
* within a blister shape as a reference model, which is then used to
* realign the subsequent images along to this reference shape. Using
* blob analysis the content of each chamber is segmented and finally
* classified by a few shape features.
*
dev_close_window ()
dev_update_off ()
read_image (ImageOrig, 'blister/blister_reference')
dev_open_window_fit_image (ImageOrig, 0, 0, -1, -1, WindowHandle)
set_display_font (WindowHandle, 14, 'mono', 'true', 'false')
dev_set_draw ('margin')
dev_set_line_width (3)
*
* In the first step, we create a pattern to cut out the chambers in the
* subsequent blister images easily.
access_channel (ImageOrig, Image1, 1)
threshold (Image1, Region, 90, 255)
shape_trans (Region, Blister, 'convex')
orientation_region (Blister, Phi)//计算角度Phi
area_center (Blister, Area1, Row, Column)//获取面积和中心点坐标
*将原来的(Row, Column, Phi)表示为(Row, Column, 0),也就是将角度调正
*输出变换矩阵HomMat2D
vector_angle_to_rigid (Row, Column, Phi, Row, Column, 0, HomMat2D)
affine_trans_image (ImageOrig, Image2, HomMat2D, 'constant', 'false')
gen_empty_obj (Chambers)
for I := 0 to 4 by 1
Row := 88 + I * 70
for J := 0 to 2 by 1
Column := 163 + J * 150
gen_rectangle2 (Rectangle, Row, Column, 0, 64, 30)
concat_obj (Chambers, Rectangle, Chambers)
endfor
endfor
affine_trans_region (Blister, Blister, HomMat2D, 'nearest_neighbor')
difference (Blister, Chambers, Pattern)
union1 (Chambers, ChambersUnion)
orientation_region (Blister, PhiRef)
PhiRef := rad(180) + PhiRef
area_center (Blister, Area2, RowRef, ColumnRef)
*
*
* Each image read will be aligned to this pattern and reduced to the area of interest,
* which is the chambers of the blister
Count := 6
for Index := 1 to Count by 1
read_image (Image, 'blister/blister_' + Index$'02')
threshold (Image, Region, 90, 255)
connection (Region, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 5000, 9999999)
shape_trans (SelectedRegions, RegionTrans, 'convex')
*
* Align pattern along blister of image
orientation_region (RegionTrans, Phi)
area_center (RegionTrans, Area3, Row, Column)
vector_angle_to_rigid (Row, Column, Phi, RowRef, ColumnRef, PhiRef, HomMat2D)
affine_trans_image (Image, ImageAffineTrans, HomMat2D, 'constant', 'false')
*
* Segment pills
reduce_domain (ImageAffineTrans, ChambersUnion, ImageReduced)
decompose3 (ImageReduced, ImageR, ImageG, ImageB)
var_threshold (ImageB, Region, 7, 7, 0.2, 2, 'dark')
connection (Region, ConnectedRegions0)
closing_rectangle1 (ConnectedRegions0, ConnectedRegions, 3, 3)
fill_up (ConnectedRegions, RegionFillUp)
select_shape (RegionFillUp, SelectedRegions, 'area', 'and', 1000, 99999)
opening_circle (SelectedRegions, RegionOpening, 4.5)
connection (RegionOpening, ConnectedRegions)
select_shape (ConnectedRegions, SelectedRegions, 'area', 'and', 1000, 99999)
shape_trans (SelectedRegions, Pills, 'convex')
*
* Classify segmentation results and display statistics
count_obj (Chambers, Number)
gen_empty_obj (WrongPill)
gen_empty_obj (MissingPill)
for I := 1 to Number by 1
select_obj (Chambers, Chamber, I)
intersection (Chamber, Pills, Pill)
area_center (Pill, Area, Row1, Column1)
if (Area > 0)
min_max_gray (Pill, ImageB, 0, Min, Max, Range)
if (Area < 3800 or Min < 60)
concat_obj (WrongPill, Pill, WrongPill)
endif
else
concat_obj (MissingPill, Chamber, MissingPill)
endif
endfor
*
dev_clear_window ()
dev_display (ImageAffineTrans)
dev_set_color ('forest green')
count_obj (Pills, NumberP)
count_obj (WrongPill, NumberWP)
count_obj (MissingPill, NumberMP)
dev_display (Pills)
if (NumberMP > 0 or NumberWP > 0)
disp_message (WindowHandle, 'Not OK', 'window', 12, 12 + 600, 'red', 'true')
else
disp_message (WindowHandle, 'OK', 'window', 12, 12 + 600, 'forest green', 'true')
endif
*
Message := '# Correct pills: ' + (NumberP - NumberWP)
Message[1] := '# Wrong pills : ' + NumberWP
Message[2] := '# Missing pills: ' + NumberMP
*
Colors := gen_tuple_const(3,'black')
if (NumberWP > 0)
Colors[1] := 'red'
endif
if (NumberMP > 0)
Colors[2] := 'red'
endif
disp_message (WindowHandle, Message, 'window', 12, 12, Colors, 'true')
dev_set_color ('red')
dev_display (WrongPill)
dev_display (MissingPill)
if (Index < Count)
disp_continue_message (WindowHandle, 'black', 'true')
endif
stop ()
endfor

仿射变换 理论
https://www.cnblogs.com/liekkas0626/p/5238564.html
Halcon 学习笔记3 仿射变换的更多相关文章
- Halcon学习笔记之支持向量机(二)
例程:classify_halogen_bulbs.hdev 在Halcon中模式匹配最成熟最常用的方式该署支持向量机了,在本例程中展示了使用支持向量机对卤素灯的质量检测方法.通过这个案例,相信大家可 ...
- Halcon学习笔记之支持向量机(一)
例程:class_overlap_svm.hdev 说明:这个例程展示了如何用一个支持向量机来给一幅二维的图像进行分类.使用二维数据的原因是因为它可以很容易地联想成为区域和图像.本例程中使用了三个互相 ...
- halcon学习笔记——机器视觉工程应用的开发思路【转】
转自:http://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...
- Halcon学习笔记——条形码的定位与识别
一维码的原理与结构 条码基本原理是利用条纹和间隔或宽窄条纹(间隔)构成二进制的”0“和”1“,反映的是某种信息. 一维条码数据结构,分四个区域.组成分别为静区.起始/终止符.校验符.数据符. 一维条码 ...
- Halcon学习笔记——机器视觉应用工程开发思路及相机标定
机器视觉应用工程开发思路 机器视觉应用工程主要可划分为两大部分,硬件部分和软件部分. 1.硬件部分,硬件的选型至关重要,决定了后续工作是否可以正常开展,其中关键硬件部分包括:光源,相机以及镜头. 2. ...
- Halcon学习笔记1
转:https://www.cnblogs.com/hanzhaoxin/archive/2013/02/15/2912879.html 机器视觉工程应用主要可划分为硬件和软件两大部分. 硬件:工程应 ...
- halcon学习笔记——(11)Image,region,xld初步
一 读取的3种方式: 读取单张的图片: read_image( image,'filename') //image 是输出对象,后面是输入文件的路径和名称 读取多图: 1,申明一个数组,分别保存路径 ...
- Halcon学习笔记之缺陷检测(二)
例程:detect_indent_fft.hdev 说明:这个程序展示了如何利用快速傅里叶变换(FFT)对塑料制品的表面进行目标(缺陷)的检测,大致分为三步: 首先,我们用高斯滤波器构造一个合适的滤波 ...
- Halcon学习笔记之缺陷检测(一)
例程:surface_scratch.hdev 说明:这个程序利用局部阈值和形态学处理提取表面划痕 代码中绿色部分为个人理解和注释,其余为例程中原有代码 *surface_scratch.hdev:e ...
随机推荐
- Shell 变量简介
1. 概述 概述 知识点又稀又碎, 面试一问就流泪 简单介绍下 shell 下的变量及其基本操作 2. 环境 操作系统 CentOS Linux release 7.5 用户 root 用户 约定 使 ...
- 机器人操作系统ROS-工作空间的建立
运行例子为重德智能的github中的robot_sim_demo 创建一个robot_ws工作空间 1. mkdir -p robot_ws/src #创建catkin 工作空间 2. cd ro ...
- 20155212 2016-2017-2 《Java程序设计》第4周学习总结
20155212 2016-2017-2 <Java程序设计>第4周学习总结 教材学习内容总结 Chapter 6 继承基本上就是避免多个类间重复定义共同行为. private成员会被继承 ...
- 20155318 《Java程序设计》实验三 (敏捷开发与XP实践)实验报告
20155318 <Java程序设计>实验三 (敏捷开发与XP实践)实验报告 实验内容 XP基础 XP核心实践 相关工具 实验步骤 (一)敏捷开发与XP 软件工程是把系统的.有序的.可量化 ...
- 【BZOJ4543】Hotel加强版
[BZOJ4543]Hotel加强版 题面 bzoj 洛谷 $ps:$在洛谷看题在bzoj交... 题解 我们分析一下这个问题,要怎么样的点才满足三点距离两两相等呢? 1.存在三个点有共同的$LCA$ ...
- 1135: [POI2009]Lyz
1135: [POI2009]Lyz https://lydsy.com/JudgeOnline/problem.php?id=1135 分析: hall定理+线段树连续区间的最大的和. 首先转化为二 ...
- SQL基本数据类型等
bit 类似C#中的bool类型 true/false int 整型 nvarchar 字符串类型 float 小数型 decimal(,) 小数型 (限制小数位数) dateti ...
- JavaWeb(十七)——JSP中的九个内置对象
一.JSP运行原理 每个JSP 页面在第一次被访问时,WEB容器都会把请求交给JSP引擎(即一个Java程序)去处理.JSP引擎先将JSP翻译成一个_jspServlet(实质上也是一个servlet ...
- Linux checksum flag in kernel
net_device->feature | NETIF_F_NO_CSUM: No need to use L4 checksum, it used for loopback device. | ...
- scrapy (一)
scrapy框架 scrapy 是一个爬虫框架,能够高效率,高层次的爬取页面的数据并进行处理. 在scrapy的英文文档中,有这样的一个流程图 scrapy 框架主要分为五大部分,spider, en ...