[AHOI2001]多项式乘法
\([Link](https://www.luogu.org/problemnew/show/P2553)\)
\(\color{red}{\mathcal{Description}}\)
给出两个多项式的乘积表达式,请求出它的结果。
啥?乘积表达式?哦,就是酱紫的:
\((4a^3 + 6a^2 + a ^ 1 + 3) * (3a^2 + a ^ 1 + 2)\)
嗯,那么它的结果也要写成这样\(qwq\)但是在这里就不举例子了\(qwq\)
\(\color{red}{\mathcal{Solution}}\)
\(emmmm\)其实吧,我根本不想做这个题,一看是要你扣数的题就觉得……十分的不可做。但是由于我刷了一下午的简单码力题,所以看到这道题感到很亲切\(qwq\)
但是!但是!但是!但是!——
这道题提供的输入的多项式们里,居然可以没有乘号!?并且这种情况应该忽略!?
好吧,还能不能好好地考察FFT了????
qwq真是毒瘤啊……并且好像在Luogu上这个题只有一个测试点……哇塞……只有一个你还那么坑……QAQ、
嗯,这道很迷的题就这么做完啦!
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#define MAXN 100010
#define il inline
const double pi = acos(-1.0) ;
using namespace std ;
bool mark ; char s [MAXN << 1];
int last, i, j, k, l, r[MAXN] ;
int F, L, Lim, to, now, tot1, tot2 ;
struct nodes{
double x, y ;
nodes (double xx = 0, double yy = 0){
x = xx, y = yy ;
}
}A[MAXN], B[MAXN], T1[MAXN], T2[MAXN] ;
nodes operator * (nodes J, nodes Q) {return nodes(J.x * Q.x - J.y * Q.y , J.x * Q.y + J.y * Q.x) ;}
nodes operator + (nodes J, nodes Q) {return nodes(J.x + Q.x , J.y + Q.y) ;}
nodes operator - (nodes J, nodes Q) {return nodes(J.x - Q.x , J.y - Q.y ) ;}
il bool read(int pos){
now = 0, to = 0 ;
while(isdigit(s[pos])) now = now * 10 + s[pos] - 48, pos ++, to ++ ;
return to ;
}
il void init(){
Lim = 1, L = strlen(s), mark = 1, F = tot1 = tot2 = l = 0 ;
for(i = 0 ; i < L; i ++) if(s[i] == '*') F = 1 ;
if(!F) return ;
memset(A, 0, sizeof(A)), memset(B, 0, sizeof(B)), memset(T1, 0, sizeof(T1)), memset(T2, 0, sizeof(T2));
}
il void prepare(){
for(i = 0; i < L && s[i] != '*'; i ++){
if(read(i)) if(s[i - 1]!= '^') T1[++ tot1].x = now * mark, mark = 1;
else if(s[i] == '+') mark = 1 ;
else if(s[i] == '-') mark = -1 ;
i += ((!to)?to : (to - 1)), last = i ;
}
for(i = 1; i <= tot1; i ++) A[tot1 - i].x = T1[i].x ; tot1 -- ;
for(i = last + 1; i < L; i ++){
if(read(i)) if(s[i - 1]!= '^') T2[++ tot2].x = now * mark, mark = 1 ;
else if(s[i] == '+') mark = 1 ;
else if(s[i] == '-') mark = -1 ;
i += ((!to)?to : (to - 1)) ;
}
for(i = 1; i <= tot2; i ++) B[tot2 - i].x = T2[i].x ; tot2 -- ;
}
il void FFT(nodes *J, double flag){
for(i = 0; i < Lim; i ++)
if(i < r[i]) swap(J[i], J[r[i]]) ;
for(j = 1; j < Lim; j <<= 1){
nodes base(cos(pi / j), flag * sin(pi / j)) ;
for(k = 0; k < Lim; k += (j << 1) ){
nodes t(1, 0) ;
for(l = 0 ; l < j; l ++, t = t * base){
nodes Nx = J[k + l], Ny = t * J[k + j + l] ;
J[k + l] = Nx + Ny ;
J[k + j + l] = Nx - Ny ;
}
}
}
}
int main(){
while(gets(s)){
init();
if(!F) continue ;
prepare() ;
while(Lim <= tot1 + tot2) Lim <<= 1, l ++ ;
for(i = 0; i < Lim; i ++ ) r[i] = (r[i >> 1] >> 1) | ((i & 1) << (l - 1)) ;
FFT(A, 1), FFT(B, 1) ;
for(i = 0; i <= Lim; i ++) A[i] = A[i] * B[i] ;
FFT(A, -1) ;
for(i = tot1 + tot2; i > 0 ; i --){
printf("%da^%d", (int)(A[i].x / Lim + 0.5), i);
if(A[i].x / Lim + 0.5 > 0) putchar('+') ;
else putchar('-') ;
}
cout << (int)(A[0].x / Lim + 0.5) << endl ;
}
}
\(4ms\)……还挺快?看来我常数挺小的\(233\).
[AHOI2001]多项式乘法的更多相关文章
- luogu P2553 [AHOI2001]多项式乘法
传送门 这题就是普及暴力模拟板子FFT板子,只要把多项式读入进来FFT一下就好了(不会的右转P3803) 重点是读入,我本以为这个字符串里到处都有空格,这里提供一种简单思路: 因为里面可能有空格,所以 ...
- 【洛谷 P2553】 [AHOI2001]多项式乘法(FFT)
题目链接 简单处理一下输入,\(fft\)模板题. #include <cstdio> #include <cmath> #include <algorithm> ...
- [UOJ#34]多项式乘法
[UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...
- [笔记]ACM笔记 - 利用FFT求卷积(求多项式乘法)
卷积 给定向量:, 向量和: 数量积(内积.点积): 卷积:,其中 例如: 卷积的最典型的应用就是多项式乘法(多项式乘法就是求卷积).以下就用多项式乘法来描述.举例卷积与DFT. 关于多项式 对于多项 ...
- FFT模板(多项式乘法)
FFT模板(多项式乘法) 标签: FFT 扯淡 一晚上都用来捣鼓这个东西了...... 这里贴一位神犇的博客,我认为讲的比较清楚了.(刚好适合我这种复数都没学的) http://blog.csdn.n ...
- 【Uoj34】多项式乘法(NTT,FFT)
[Uoj34]多项式乘法(NTT,FFT) 题面 uoj 题解 首先多项式乘法用\(FFT\)是一个很久很久以前就写过的东西 直接贴一下代码吧.. #include<iostream> # ...
- 【learning】多项式乘法&fft
[吐槽] 以前一直觉得这个东西十分高端完全不会qwq 但是向lyy.yxq.yww.dtz等dalao们学习之后发现这个东西的代码实现其实极其简洁 于是趁着还没有忘记赶紧来写一篇博 (说起来这篇东西的 ...
- 多项式乘法(FFT)学习笔记
------------------------------------------本文只探讨多项式乘法(FFT)在信息学中的应用如有错误或不明欢迎指出或提问,在此不胜感激 多项式 1.系数表示法 ...
- FFT/NTT总结+洛谷P3803 【模板】多项式乘法(FFT)(FFT/NTT)
前言 众所周知,这两个东西都是用来算多项式乘法的. 对于这种常人思维难以理解的东西,就少些理解,多背板子吧! 因此只总结一下思路和代码,什么概念和推式子就靠巨佬们吧 推荐自为风月马前卒巨佬的概念和定理 ...
随机推荐
- 一文看懂大数据的技术生态圈,Hadoop,hive,spark都有了
一文看懂大数据的技术生态圈,Hadoop,hive,spark都有了 转载: 大数据本身是个很宽泛的概念,Hadoop生态圈(或者泛生态圈)基本上都是为了处理超过单机尺度的数据处理而诞生的.你可以把它 ...
- c# 使用 Newtonsoft.Json 序列化json字符串以及,反序列化对象
1. 序列化 对象 /** 使用 Newtonsoft.Json 序列化对象 **/ [WebMethod] public String getPersonInfos() { // 初始化数据 Lis ...
- PAT 1052. Linked List Sorting
这场考试当年还参加了,当时直接用内置的排序了,否则自己写归并排序浪费时间啊,现在来练习一发.估计又有些节点没在链表里面,当时没考虑这个情况,所以一直有些case没过 #include <iost ...
- Bzoj4766: 文艺计算姬(Matrix-tree/prufer)
BZOJ 答案就是 \(n^{m-1}m^{n-1}\) \(prufer\) 证明: \(n\) 中的数字出现 \(m-1\) 次,\(m\) 中出现 \(n-1\) 次,根据 \(prufer\) ...
- JavaScript的进阶之路(五)理解数组2
数组方法 //定义一个测试数组 var array1 = [1,2,5,null,"a"]; //join()方法是String.split()方法的逆操作,后者是将字符串分割成若 ...
- jetty插件实现 热部署
<plugin> <groupId>org.eclipse.jetty</groupId> <artifactId>jetty-maven-plugin ...
- Volley1--为什么说Volley适合数据量小,通信频繁的网络操作
前言 网络编程对于客户端来说是一块及其重要的地方,使用高效的网络请求框架将为你的系统产生很大的影响.而Volley作为谷歌的一个开源项目,炙手可热.有很多中小型公司的安卓移动客户端的网络程序都是基于v ...
- android端的ormlite框架
安卓端有很多优秀的数据库框架来操作sqlite,如ormlite框架,这个框架可以用来实现表到对象的解析和转化. 使用: 首先去官网下载两个jar包,core和android(如果在安卓端开发的话), ...
- androidandroid中的通过网页链接打开本地app
http://blog.csdn.net/zjlovety/article/details/54847980 <html> <head> <meta http-equiv ...
- [翻译] PPDragDropBadgeView
PPDragDropBadgeView https://github.com/smallmuou/PPDragDropBadgeView PPDragDropBadgeView is a badge ...