最小生成树概念:

一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边。 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里姆)算法求出。最小生成树其实是最小权重生成树的简称。

prim:

概念:普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。

实现过程:

图例 说明 不可选 可选 已选(Vnew

此为原始的加权连通图。每条边一侧的数字代表其权值。 - - -

顶点D被任意选为起始点。顶点ABEF通过单条边与D相连。A是距离D最近的顶点,因此将A及对应边AD以高亮表示。 C, G A, B, E, F D

下一个顶点为距离DA最近的顶点。BD为9,距A为7,E为15,F为6。因此,FDA最近,因此将顶点F与相应边DF以高亮表示。 C, G B, E, F A, D
算法继续重复上面的步骤。距离A为7的顶点B被高亮表示。 C B, E, G A, D, F

在当前情况下,可以在CEG间进行选择。CB为8,EB为7,GF为11。E最近,因此将顶点E与相应边BE高亮表示。 C, E, G A, D, F, B

这里,可供选择的顶点只有CGCE为5,GE为9,故选取C,并与边EC一同高亮表示。 C, G A, D, F, B, E

顶点G是唯一剩下的顶点,它距F为11,距E为9,E最近,故高亮表示G及相应边EG G A, D, F, B, E, C

现在,所有顶点均已被选取,图中绿色部分即为连通图的最小生成树。在此例中,最小生成树的权值之和为39。 A, D, F, B, E, C, G

算法模板:

#include<stdio.h>
#include<string.h>
#include <iostream>
#include <bits/stdc++.h>
#define IO ios::sync_with_stdio(false);\
cin.tie();\
cout.tie();
#define MAX 0x3f3f3f3f
using namespace std;
int logo[];//用来标记0和1 表示这个点是否被选择过
int map1[][];//邻接矩阵用来存储图的信息
int dis[];//记录任意一点到这个点的最近距离
int n;//点个数
int prim()
{
int i,j,now;
int sum=;
/*初始化*/
for(i=; i<=n; i++)
{
dis[i]=MAX;
logo[i]=;
}
/*选定1为起始点,初始化*/
for(i=; i<=n; i++)
{
dis[i]=map1[][i];
}
dis[]=;
logo[]=;
/*循环找最小边,循环n-1次*/
for(i=; i<n; i++)
{
now=MAX;
int min1=MAX;
for(j=; j<=n; j++)
{
if(logo[j]==&&dis[j]<min1)
{
now=j;
min1=dis[j];
}
}
if(now==MAX)
break;//防止不成图
logo[now]=;
sum+=min1;
for(j=; j<=n; j++)//添入新点后更新最小距离
{
if(logo[j]==&&dis[j]>map1[now][j])
dis[j]=map1[now][j];
}
}
if(i<n)
printf("?\n");
else
printf("%d\n",sum);
}
int main()
{
while(scanf("%d",&n),n)//n是点数
{
int m=n*(n-)/;//m是边数
memset(map1,0x3f3f3f3f,sizeof(map1));//map是邻接矩阵存储图的信息
for(int i=; i<m; i++)
{
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
if(c<map1[a][b])//防止重边
map1[a][b]=map1[b][a]=c;
}
prim();
}
}

Kruskal算法:

1.概览

  Kruskal算法是一种用来寻找最小生成树的算法,在剩下的所有未选取的边中,找最小边,如果和已选取的边构成回路,则放弃,选取次小边。

2.实现过程

1).记Graph中有v个顶点,e个边

2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边

3).将原图Graph中所有e个边按权值从小到大排序

4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中  if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中   添加这条边到图Graphnew

  图例描述:

首先第一步,我们有一张图Graph,有若干点和边

将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了下图

在剩下的变中寻找。我们找到了CE。这里边的权重也是5

依次类推我们找到了6,7,7,即DF,AB,BE。

下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。最后就剩下EG和FG了。当然我们选择了EG。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int n, m,sum;
struct node
{
int start,end,power;//start为起始点,end为终止点,power为权值
} edge[];
int pre[]; int cmp(node a, node b)
{
return a.power<b.power;//按照权值排序
} int find(int x)//并查集找祖先
{
if(x!=pre[x])
{
pre[x]=find(pre[x]);
}
return pre[x];
} void merge(int x,int y,int n)//并查集合并函数,n是用来记录最短路中应该加入哪个点
{
int fx=find(x);
int fy=find(y);
if(fx!=fy)
{
pre[fx]=fy;
sum+=edge[n].power;
}
}
int main()
{
while(~scanf("%d", &n), n)//n是点数
{
sum=;
m=n*(n-)/;//m是边数,可以输入
int i;
int start,end,power;
for(i=; i<=m; i++)
{
scanf("%d %d %d", &start, &end, &power);
edge[i].start=start,edge[i].end=end,edge[i].power=power;
}
for(i=; i<=m; i++)
{
pre[i]=i;
}//并查集初始化
sort(edge+, edge+m+,cmp);
for(i=; i <= m; i++)
{
merge(edge[i].start,edge[i].end,i);
}
printf("%d\n",sum);
}
return ;
}

最小生成树详解 prim+ kruskal代码模板的更多相关文章

  1. 最小生成树算法(Prim,Kruskal)

    边赋以权值的图称为网或带权图,带权图的生成树也是带权的,生成树T各边的权值总和称为该树的权. 最小生成树(MST):权值最小的生成树. 生成树和最小生成树的应用:要连通n个城市需要n-1条边线路.可以 ...

  2. 最小生成树算法详解(prim+kruskal)

    最小生成树概念: 一个有 n 个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有 n 个结点,并且有保持图连通的最少的边. 最小生成树可以用kruskal(克鲁斯卡尔)算法或prim(普里 ...

  3. (原创)最小生成树之Prim(普里姆)算法+代码详解,最懂你的讲解

    Prim算法 (哈欠)在创建最小生成树之前,让我们回忆一下什么是最小生成树.最小生成树即在一个待权值的图(即网结构)中用一个七拐八绕的折线串连起所有的点,最小嘛,顾名思义,要权值相加起来最小,你当然可 ...

  4. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  5. 最小生成树(prim&kruskal)

    最近都是图,为了防止几次记不住,先把自己理解的写下来,有问题继续改.先把算法过程记下来: prime算法:                  原始的加权连通图——————D被选作起点,选与之相连的权值 ...

  6. 最小生成树 Prim Kruskal

    layout: post title: 最小生成树 Prim Kruskal date: 2017-04-29 tag: 数据结构和算法 --- 目录 TOC {:toc} 最小生成树Minimum ...

  7. 最小生成树算法 prim kruskal两种算法实现 HDU-1863 畅通工程

    最小生成树 通俗解释:一个连通图,可将这个连通图删减任意条边,仍然保持连通图的状态并且所有边权值加起来的总和使其达到最小.这就是最小生成树 可以参考下图,便于理解 原来的图: 最小生成树(蓝色线): ...

  8. 最小生成树之Prim Kruskal算法(转)

    最小生成树 首先,生成树是建立在无向图中的,对于有向图,则没有生成树的概念,所以接下来讨论的图均默认为无向图.对于一个有n个点的图,最少需要n-1条边使得这n个点联通,由这n-1条边组成的子图则称为原 ...

  9. BFS详解

    广度优先搜索详解          1. 也称宽度优先搜索,顾名思义,就是将一棵树一层一层往下搜.算法首先搜索和s距离为k的所有顶点,然后再去搜索和S距离为k+l的其他顶点.BFS是一种完备策略,即只 ...

随机推荐

  1. Masonry 在swift下的使用

    Masonry在oc下使用很方便,但是在swift下,由于oc方法和property都可以使用.fuc的语法,swift下只有属性可以使用.property的语法,方法只能写成.func().因此在s ...

  2. 使用 XML 配置 MyBatis

    构建 SqlSessionFactory 最常见的方式是基于 XML 配置(的构造方式).下面的 mybatis-config.xml 展示了一个 典型的 MyBatis 配置文件的样子: XML C ...

  3. Swift字符串插值

    字符串插值是一种全新的构建字符串的方式,可以在其中包含常量.变量.字面量和表达式.您插入的字符串字面量的每一项都被包裹在以反斜线为前缀的圆括号中: let multiplier = let messa ...

  4. 【caffe】Error parsing text-format NetParameter: ****:**:Expected string.

    错误描述: prototxt中第****行,第**列缺少一个整型数或者标识符. 解决方法: 检查对应的prototxt文件,第****行,第**列是否遗漏相关信息. 我的文件是在代码新旧版本没对应好~ ...

  5. kbengine新手教程

    KBEngine服务端引擎开源项目地址(github):https://github.com/kbengine/kbengine引擎下载与编译:http://kbengine.org/cn/docs/ ...

  6. 简单粗暴的在vmware虚拟机中固定ip

    虚拟机对于很多做测试的或者在学习测试中的人来说是位常客,经常会用到,但是虚拟机重启之后,很多人遇到虚拟机ip变化,很是头痛,我在学习过程中也遇到了这个问题,百度了很多办法,有些办法对于网络知识小白来说 ...

  7. Immutable的认识

    Facebook 工程师 Lee Byron 花费 3 年时间打造,与 React 同期出现,但没有被默认放到 React 工具集里(React 提供了简化的 Helper).它内部实现了一套完整的 ...

  8. 基于Http协议订阅发布系统设计

      基于Http协议订阅发布系统设计 --物联网系统架构设计   1,订阅发布(subscriber-publisher)      订阅发布模式最典型的应用场景就是消息系统的设计.在消息系统的架构中 ...

  9. 利用Python实现一个感知机学习算法

    本文主要参考英文教材Python Machine Learning第二章.pdf文档下载链接: https://pan.baidu.com/s/1nuS07Qp 密码: gcb9. 本文主要内容包括利 ...

  10. "HK"日常之制作一只QQ刷屏

    刷屏器是什么?可以吃吗?如果可以吃它好吃吗? um. 刷屏器就是可以定时发生信息的东西 刷屏器可以应用于很多方面,例如别人不理你了或者在QQ斗图的时候.警告:本教程仅作为学习研究,禁止其他用途!--- ...