最近学习了人体姿态的相似性评价。需要用到KNN来统计与当前姿态相似的k个姿态信息。

假设我们已经有了矩阵W和给定的测试样本姿态Xi,需要寻找与Xi相似的几个姿态,来估计当前Xi的姿态标签。

//knn操作
//读入一帧测试帧 去训练集里面求距离
/*
1、计算已知类别数据集合汇总的点与当前点的距离
2、按照距离递增次序排序
3、选取与当前点距离最近的K个点
4、确定距离最近的前K个点所在类别的出现频率
5、返回距离最近的前K个点中频率最高的类别作为当前点的预测分类
*/

//knn操作
//读入一帧测试帧 去训练集里面求距离
/*
1、计算已知类别数据集合汇总的点与当前点的距离
2、按照距离递增次序排序
3、选取与当前点距离最近的K个点
4、确定距离最近的前K个点所在类别的出现频率
5、返回距离最近的前K个点中频率最高的类别作为当前点的预测分类
*/
//test mat 输入是 1*60的或者1*n的 matrix需要平方。。才是马氏距离矩阵
//
int knn(vector<Mat>&trainSample, vector<int>&trainLabel, Mat &test, Mat& matrix, int k, string prefix)
{
int label,n = trainSample.size();
map<float, vector<int>>mp;//记录距离与训练集的索引 距离从小到大排列 ofstream of(prefix+"\\distance.txt"); for (int i = ; i < n;i++)
{
Mat diff = test - trainSample[i]; Mat dis = diff * matrix * matrix.t() * diff.t();//不开方了 cout <<i<<"距离---"<< dis << endl;
float distance = dis.at<float>(, ); of << distance << " ";
mp[distance].push_back(i);
}
of << endl;
of.close(); map<int,int>testLabel;//统计label出现次数
for (auto it = mp.begin(); it != mp.end() && k>;it++)
{
for (int j = ; j < it->second.size() && k>; j++)
{
testLabel[trainLabel[it->second[j]]]++;
k--;
}
}
int temp = ;//找到出现次数最多的label作为测试的标签
for (auto it = testLabel.begin(); it != testLabel.end();it++)
{
if (temp < it->second)
{
label = it->first;
temp = it->second;
}
}
return label;
}

如下是准备训练和测试数据,并评估当前knn实验结果。

//测试一下knn是否跑通 跑正确
//
void testknn()
{
vector<Mat> trainSample, testSample;
vector<int> trainLabel, testLabel;
string prefix = "E:\\laboratory\\dataset\\synthesisdata\\mypartresults";
int row = , col = ;//groundtruth是60=20*3列 聚类特征是22*3=66
int k = ;
int label,correct=; Mat matrix = InitMat("E:\\code_bsm\\bsm\\W_bsm_d=5_kc=1_kr=0.1_eps1=0.0001_eps2=1e-06.txt", , , false, label);
getTrainAndTestData(trainSample, testSample, trainLabel, testLabel, prefix, row, col); for (int i = ; i < testSample.size();i++)
{
label = knn(trainSample, trainLabel, testSample[i], matrix, k,prefix);
if (label == testLabel[i])
{
correct++
;
}
}

cout << correct << "/" << testSample.size() << endl;
}

参考文献:

辛永佳. 基于分层稀疏表示模型的人体姿态和行为相似性度量[D]. 北京工业大学, 2016.

人体姿态的相似性评价基于OpenCV实现最近邻分类KNN K-Nearest Neighbors的更多相关文章

  1. 快速人体姿态估计:CVPR2019论文阅读

    快速人体姿态估计:CVPR2019论文阅读 Fast Human Pose Estimation 论文链接: http://openaccess.thecvf.com/content_CVPR_201 ...

  2. Java基于opencv实现图像数字识别(二)—基本流程

    Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...

  3. Facebook提出DensePose数据集和网络架构:可实现实时的人体姿态估计

    https://baijiahao.baidu.com/s?id=1591987712899539583 选自arXiv 作者:Rza Alp Güler, Natalia Neverova, Ias ...

  4. 基于 OpenCV 的人脸识别

    基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...

  5. 人体姿态和形状估计的视频推理:CVPR2020论文解析

    人体姿态和形状估计的视频推理:CVPR2020论文解析 VIBE: Video Inference for Human Body Pose and Shape Estimation 论文链接:http ...

  6. [转载]卡尔曼滤波器及其基于opencv的实现

    卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接, ...

  7. 基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  8. 基于OpenCv的人脸检测、识别系统学习制作笔记之一

    基于OpenCv从视频文件到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 Cv ...

  9. 基于opencv网络摄像头在ubuntu下的视频获取

     基于opencv网络摄像头在ubuntu下的视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译运行步骤 安装编译opencv-2.3  参 ...

随机推荐

  1. LINUX 笔记-scp命令

    从本地服务器复制到远程服务器: (1) 复制文件: 命令格式: scp local_file remote_username@remote_ip:remote_folder (2) 复制目录: 命令格 ...

  2. 有关Datatabled的合并,排序和删除重复行的方法

    当某些操作需要涉及合并Datatable时,我们应该如何操作呢? 下面是自己总结的一些方法: 当有两表dt1和dt2的时候,使用dt1.Merge(dt2) 可以将表1表2中相同的合并在一起 排序方法 ...

  3. OOAD-设计模式(二)之GRASP模式与GOF设计模式概述

    一.GRASP模式(通用责任分配软件模式)概述 1.1.理解责任 1)什么是责任 责任是类间的一种合约或义务,也可以理解成一个业务功能,包括行为.数据.对象的创建等 知道责任——表示知道什么 行为责任 ...

  4. 使用Git与Github创建自己的远程仓库

    原因 早就想创建一个自己的远程仓库,方便发布到Nuget上,自己用也好,项目组用也好,都方便. 今天抽了个时间建了个仓库,随便记下溜方便后来的人. 流程 1,创建自己的GitHub仓库 首先需要到 G ...

  5. time函数获取时间与本地时间不一致

    修改php.ini,将“date.timezone”项修改为“date.timezone = PRC”. 大陆内地可用的值是:Asia/Chongqing ,Asia/Shanghai ,Asia/U ...

  6. Linux命令用法

    1.cut http://www.cnblogs.com/dong008259/archive/2011/12/09/2282679.html 2.sed http://www.cnblogs.com ...

  7. eclipse项目中引入shiro-freemarker-tags会jar包冲突

    maven项目中引入了这个依赖. <dependency> <groupId>net.mingsoft</groupId> <artifactId>sh ...

  8. 在EF中正确的使用事务

    1.EF中使用事务: using (TransactionScope tran = new TransactionScope()) { try { using(var _context = new D ...

  9. hadoop集群服务器配置注意事项

    1.使用root账户,一劳记逸,远离权限问题. 2.关闭防火墙,命令:service iptables stop 想永久关闭,命令为:chkconfig iptables off 查看防火墙状态,命令 ...

  10. Problem K

    Problem Description The local toy store sells small fingerpainting kits with between three and twelv ...