最近学习了人体姿态的相似性评价。需要用到KNN来统计与当前姿态相似的k个姿态信息。

假设我们已经有了矩阵W和给定的测试样本姿态Xi,需要寻找与Xi相似的几个姿态,来估计当前Xi的姿态标签。

//knn操作
//读入一帧测试帧 去训练集里面求距离
/*
1、计算已知类别数据集合汇总的点与当前点的距离
2、按照距离递增次序排序
3、选取与当前点距离最近的K个点
4、确定距离最近的前K个点所在类别的出现频率
5、返回距离最近的前K个点中频率最高的类别作为当前点的预测分类
*/

//knn操作
//读入一帧测试帧 去训练集里面求距离
/*
1、计算已知类别数据集合汇总的点与当前点的距离
2、按照距离递增次序排序
3、选取与当前点距离最近的K个点
4、确定距离最近的前K个点所在类别的出现频率
5、返回距离最近的前K个点中频率最高的类别作为当前点的预测分类
*/
//test mat 输入是 1*60的或者1*n的 matrix需要平方。。才是马氏距离矩阵
//
int knn(vector<Mat>&trainSample, vector<int>&trainLabel, Mat &test, Mat& matrix, int k, string prefix)
{
int label,n = trainSample.size();
map<float, vector<int>>mp;//记录距离与训练集的索引 距离从小到大排列 ofstream of(prefix+"\\distance.txt"); for (int i = ; i < n;i++)
{
Mat diff = test - trainSample[i]; Mat dis = diff * matrix * matrix.t() * diff.t();//不开方了 cout <<i<<"距离---"<< dis << endl;
float distance = dis.at<float>(, ); of << distance << " ";
mp[distance].push_back(i);
}
of << endl;
of.close(); map<int,int>testLabel;//统计label出现次数
for (auto it = mp.begin(); it != mp.end() && k>;it++)
{
for (int j = ; j < it->second.size() && k>; j++)
{
testLabel[trainLabel[it->second[j]]]++;
k--;
}
}
int temp = ;//找到出现次数最多的label作为测试的标签
for (auto it = testLabel.begin(); it != testLabel.end();it++)
{
if (temp < it->second)
{
label = it->first;
temp = it->second;
}
}
return label;
}

如下是准备训练和测试数据,并评估当前knn实验结果。

//测试一下knn是否跑通 跑正确
//
void testknn()
{
vector<Mat> trainSample, testSample;
vector<int> trainLabel, testLabel;
string prefix = "E:\\laboratory\\dataset\\synthesisdata\\mypartresults";
int row = , col = ;//groundtruth是60=20*3列 聚类特征是22*3=66
int k = ;
int label,correct=; Mat matrix = InitMat("E:\\code_bsm\\bsm\\W_bsm_d=5_kc=1_kr=0.1_eps1=0.0001_eps2=1e-06.txt", , , false, label);
getTrainAndTestData(trainSample, testSample, trainLabel, testLabel, prefix, row, col); for (int i = ; i < testSample.size();i++)
{
label = knn(trainSample, trainLabel, testSample[i], matrix, k,prefix);
if (label == testLabel[i])
{
correct++
;
}
}

cout << correct << "/" << testSample.size() << endl;
}

参考文献:

辛永佳. 基于分层稀疏表示模型的人体姿态和行为相似性度量[D]. 北京工业大学, 2016.

人体姿态的相似性评价基于OpenCV实现最近邻分类KNN K-Nearest Neighbors的更多相关文章

  1. 快速人体姿态估计:CVPR2019论文阅读

    快速人体姿态估计:CVPR2019论文阅读 Fast Human Pose Estimation 论文链接: http://openaccess.thecvf.com/content_CVPR_201 ...

  2. Java基于opencv实现图像数字识别(二)—基本流程

    Java基于opencv实现图像数字识别(二)-基本流程 做一个项目之前呢,我们应该有一个总体把握,或者是进度条:来一步步的督促着我们来完成这个项目,在我们正式开始前呢,我们先讨论下流程. 我做的主要 ...

  3. Facebook提出DensePose数据集和网络架构:可实现实时的人体姿态估计

    https://baijiahao.baidu.com/s?id=1591987712899539583 选自arXiv 作者:Rza Alp Güler, Natalia Neverova, Ias ...

  4. 基于 OpenCV 的人脸识别

    基于 OpenCV 的人脸识别 一点背景知识 OpenCV 是一个开源的计算机视觉和机器学习库.它包含成千上万优化过的算法,为各种计算机视觉应用提供了一个通用工具包.根据这个项目的关于页面,OpenC ...

  5. 人体姿态和形状估计的视频推理:CVPR2020论文解析

    人体姿态和形状估计的视频推理:CVPR2020论文解析 VIBE: Video Inference for Human Body Pose and Shape Estimation 论文链接:http ...

  6. [转载]卡尔曼滤波器及其基于opencv的实现

    卡尔曼滤波器及其基于opencv的实现 源地址:http://hi.baidu.com/superkiki1989/item/029f65013a128cd91ff0461b 这个是维基百科中的链接, ...

  7. 基于Opencv和Mfc的图像处理增强库GOCVHelper(索引)

    GOCVHelper(GreenOpen Computer Version Helper )是我在这几年编写图像处理程序的过程中积累下来的函数库.主要是对Opencv的适当扩展和在实现Mfc程序时候的 ...

  8. 基于OpenCv的人脸检测、识别系统学习制作笔记之一

    基于OpenCv从视频文件到摄像头的人脸检测 在OpenCv中读取视频文件和读取摄像头的的视频流然后在放在一个窗口中显示结果其实是类似的一个实现过程. 先创建一个指向CvCapture结构的指针 Cv ...

  9. 基于opencv网络摄像头在ubuntu下的视频获取

     基于opencv网络摄像头在ubuntu下的视频获取 1  工具 原料 平台 :UBUNTU12.04 安装库  Opencv-2.3 2  安装编译运行步骤 安装编译opencv-2.3  参 ...

随机推荐

  1. 脱壳第一讲,手工脱壳ASPack2.12的壳.ESP定律

    脱壳第一讲,手工脱壳ASPack2.12的壳.ESP定律 一丶什么是ESP定律 首先我们要明白什么是壳.壳的作用就是加密PE的. 而ESP定律就是壳在加密之前,肯定会保存所有寄存器环境,而出来的时候, ...

  2. LeetCode 404. Sum of Left Leaves (左子叶之和)

    Find the sum of all left leaves in a given binary tree. Example: 3 / \ 9 20 / \ 15 7 There are two l ...

  3. 【SQL注入】mysql中information_schema详解

    在MySQL中,把 information_schema 看作是一个数据库,确切说是信息数据库.其中保存着关于MySQL服务器所维护的所有其他数据库的信息.如数据库名,数据库的表,表栏的数据类型与访问 ...

  4. python 使用标准库连接linux实现scp和执行命令

    import stat import pexpect 只显示关键代码: sqldb = localpath+database //获取database名字 if os.path.exists(sqld ...

  5. 微信小程序左滑删除功能

    效果图如下: wxml代码: <view class="container"> <view class="touch-item {{item.isTou ...

  6. 利用Tkinter和matplotlib两种方式画饼状图

    当我们学习python的时候,总会用到一些常用的模块,接下来我就详细讲解下利用两种不同的方式画饼状图.首先利用[Tkinter]中的canvas画布来画饼状图: from tkinter import ...

  7. SQLAlchemy复杂查询

    最近个人用python + flask搞了一个小项目,ORM用到的是SQLAlchemy.   SQLAlchemy的查询方式非常灵活,你所能想像到的复杂SQL 语句,基本上都可以实现.这里简单的总结 ...

  8. SQL基本查询_多表查询(实验三)

    SQL基本查询_多表查询(实验三) 题目要求(一) 针对emp.dept两表完成如下查询,并验证查询结果的正确性 使用显式内连接查询所有员工的信息,显示其编号.姓名.薪水.入职日期及部门名称: 使用隐 ...

  9. Jquery基础笔记

    1.$(function(){               等价于     window.onload=function(){ })                               } 2 ...

  10. JAVA提高十二:HashMap深入分析

    首先想说的是关于HashMap源码的分析园子里面应该有很多,并且都是分析得很不错的文章,但是我还是想写出自己的学习总结,以便加深自己的理解,因此就有了此文,另外因为小孩过来了,因此更新速度可能放缓了, ...