Reinforcement Learning in R
Reinforcement learning has gained considerable traction as it mines real experiences with the help of trial-and-error learning to model decision-making. Thus, this approach attempts to imitate the fundamental method used by humans of learning optimal behavior without the requirement of an explicit model of the environment. In contrast to many other approaches from the domain of machine learning, reinforcement learning works well with learning tasks of arbitrary length and can be used to learn complex strategies for many scenarios, such as robotics and game playing.
Our slide deck is positioned at the intersection of teaching the basic idea of reinforcement learning and providing practical insights into R. While existing packages, such as MDPtoolbox, are well suited to tasks that can be formulated as a Markov decision process, we also provide practical guidance regarding how to set up reinforcement learning in more vague environments. Therefore, each algorithm comes with an easy-to-understand explanation of how to use it in R.
We hope that the slide deck enables practitioners to quickly adopt reinforcement learning for their applications in R. Moreover, the materials might lay the groundwork for courses on human decision-making and machine learning.
Download the slides here
Download the exercise sheet here (solutions are available on request)
Reinforcement Learning in R的更多相关文章
- Awesome Reinforcement Learning
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...
- Machine Learning Algorithms Study Notes(5)—Reinforcement Learning
Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
- (转) Deep Learning Research Review Week 2: Reinforcement Learning
Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- 论文笔记之:Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...
- 论文笔记之:Active Object Localization with Deep Reinforcement Learning
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...
- 增强学习(Reinforcement Learning and Control)
增强学习(Reinforcement Learning and Control) [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...
- Deep Reinforcement Learning for Dialogue Generation 论文阅读
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...
随机推荐
- WPF自定义控件(1)——仪表盘设计[1]
0.小叙闲言 又接手一个新的项目了,再来一次上位机开发.网上有很多控件库,做仪表盘(gauge)的也不少,功能也很强大,但是个人觉得库很臃肿,自己就计划动手来写一个控件库,一是为学习,二是为了项目.下 ...
- 2 Java对象的创建过程
JAVA中创建对象直接new创建一个对象,对么对象的创建过程是怎样的呢? 程序运行过程中有许多的对象被创建出来.那么对象是如何创建的呢? 一 对象创建的步骤 1 遇到new指令时,检查这个指令的参数是 ...
- AOP学习笔记一
软件开发的目的是为了解决各种需求,包括业务需求和系统需求.目前,业界通过使用面向对象的编程思想,已经可以对业务需求等普通关注点进行很好的抽象与封装,并且使之模块化.但是对于系统需求一类的关注点来说,情 ...
- Spring Ioc介绍和Bean的实例化
一.IoC:Inverse of Control 控制反转 // 依赖注入 Dependency Injection 控制:某一接口具体实现类的选择权 反转:从调用者中移除控制权,转交第三方 ...
- metools,不花一分钱就能拥有自己的工具站点?
需要[加密/解密][编码/解码][生成二维码]的时候不用再进百度点广告~ 也不需要去收藏夹找网址~ 我的目的大概就是如此. 项目地址:https://github.com/yimogit/metool ...
- 关于php 高并发解决的一点思路
涉及抢购.秒杀.抽奖.抢票等活动时,为了避免超卖,那么库存数量是有限的,但是如果同时下单人数超过了库存数量,就会导致商品超卖问题.那么我们怎么来解决这个问题呢,我的思路如下(伪代码): sql1:查询 ...
- cookie和session的区别异同
1.用于保存页面信息:如自动登录,记住用户名 2.对于同一个网站只有一套cookie,它是以域名为单位的,一个域名就是一套,数量大小有限4k-10k,同时会具有过期时间 3.JS中通过document ...
- StringBuilder的实现
先看看MS给出的官方解释吧 (http://msdn.microsoft.com/zh-cn/library/system.text.stringbuilder(VS.80).aspx) String ...
- Bitbucket导入项目
1.先初始化git本地仓库(如果已经受git管理跳过此步) $ git init 2.添加远程仓库 $ git remote add origin git@bitbucket.org:name/rep ...
- Google Earth影像数据破解之旅
"Zed, you are so excellent." 为什么要写这句英文?容我卖个关子稍后再解释. 相信大多数人都体验过Google Earth(简称GE),我对GE最初的印象 ...