Reinforcement learning has gained considerable traction as it mines real experiences with the help of trial-and-error learning to model decision-making. Thus, this approach attempts to imitate the fundamental method used by humans of learning optimal behavior without the requirement of an explicit model of the environment. In contrast to many other approaches from the domain of machine learning, reinforcement learning works well with learning tasks of arbitrary length and can be used to learn complex strategies for many scenarios, such as robotics and game playing.

Our slide deck is positioned at the intersection of teaching the basic idea of reinforcement learning and providing practical insights into R. While existing packages, such as MDPtoolbox, are well suited to tasks that can be formulated as a Markov decision process, we also provide practical guidance regarding how to set up reinforcement learning in more vague environments. Therefore, each algorithm comes with an easy-to-understand explanation of how to use it in R.

We hope that the slide deck enables practitioners to quickly adopt reinforcement learning for their applications in R. Moreover, the materials might lay the groundwork for courses on human decision-making and machine learning.

Download the slides here

Download the exercise sheet here (solutions are available on request)

Reinforcement Learning in R的更多相关文章

  1. Awesome Reinforcement Learning

    Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...

  2. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  3. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  4. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  5. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  6. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

  7. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  8. 增强学习(Reinforcement Learning and Control)

    增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...

  9. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

随机推荐

  1. 将1、2、3、……、n这n个连续自然数分成g组,使每组的和相等。g组中个数最多的一组有几个?

    <style type="text/css"> #content { width: 600px; margin: 150px auto 0 auto; } dl dd ...

  2. Hadoop之HDFS原理及文件上传下载源码分析(上)

    HDFS原理 首先说明下,hadoop的各种搭建方式不再介绍,相信各位玩hadoop的同学随便都能搭出来. 楼主的环境: 操作系统:Ubuntu 15.10 hadoop版本:2.7.3 HA:否(随 ...

  3. std::thread使用

    本文将从以下三个部分介绍C++11标准中的thread类,本文主要内容为: 启动新线程 等待线程与分离线程 线程唯一标识符 1.启动线程 线程再std::threada对象创建时启动.最简单的情况下, ...

  4. React的学习(下)

    摘要 众所周知,前端三大框架Angular.React.Vue,所以为了跟上时代的步伐,最近开始着手学习React,这时候就发现个大问题,框架一直在更新,提倡的编写语法也在更新,网上有许多教程都是一两 ...

  5. 创建,删除DOM

    需求说明: 1.上传图片,有删除功能,可上传5张,至少上传一张 html代码如下 <div class="imgUpBox"> <div class=" ...

  6. Java设计模式———静态工厂

    上课时yqj2065要求:除了JDK等框架或工具中的类,自己编写的类不得使用new创建对象(Test除外). 据说是因为使用new会涉及到硬编码.(不是很懂) 所以要求用God类利用反射+配置文件来创 ...

  7. AOJ/搜索递归分治法习题集

    ALDS1_4_A-LinearSearch. Description: You are given a sequence of n integers S and a sequence of diff ...

  8. nodejs+mongo 实现搜附近的人

    参考网址:http://blog.csdn.net/huangrunqing/article/details/9112227 用mongo作为存储,来实现搜索附近的人具有先天的优势, MongoDB原 ...

  9. iOS APP打包分发给远程的手机测试

    APP要打包给远程的朋友或客户测试,但又不是企业账号的情况下,我们只能根据手机的udid进行描述证书的配置,再打包分发给提供了udid的手机进行安装 一.如何得到udid? 手机连接到mac电脑,打开 ...

  10. 安卓手机免root实现对其他软件最高管理(sandbox思想)

      root之后的安卓系统并不稳定,root后有时候会出现一些系统的错误,如果实在忍受不了的话,这时候只能恢复出厂设置了.因此不root是最优的选择,但是不root情况下,并没有哪个软件可以实现对其它 ...