Reinforcement learning has gained considerable traction as it mines real experiences with the help of trial-and-error learning to model decision-making. Thus, this approach attempts to imitate the fundamental method used by humans of learning optimal behavior without the requirement of an explicit model of the environment. In contrast to many other approaches from the domain of machine learning, reinforcement learning works well with learning tasks of arbitrary length and can be used to learn complex strategies for many scenarios, such as robotics and game playing.

Our slide deck is positioned at the intersection of teaching the basic idea of reinforcement learning and providing practical insights into R. While existing packages, such as MDPtoolbox, are well suited to tasks that can be formulated as a Markov decision process, we also provide practical guidance regarding how to set up reinforcement learning in more vague environments. Therefore, each algorithm comes with an easy-to-understand explanation of how to use it in R.

We hope that the slide deck enables practitioners to quickly adopt reinforcement learning for their applications in R. Moreover, the materials might lay the groundwork for courses on human decision-making and machine learning.

Download the slides here

Download the exercise sheet here (solutions are available on request)

Reinforcement Learning in R的更多相关文章

  1. Awesome Reinforcement Learning

    Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...

  2. Machine Learning Algorithms Study Notes(5)—Reinforcement Learning

    Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...

  3. (zhuan) Deep Reinforcement Learning Papers

    Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...

  4. (转) Deep Learning Research Review Week 2: Reinforcement Learning

      Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...

  5. 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning

    Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...

  6. 论文笔记之:Playing Atari with Deep Reinforcement Learning

    Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...

  7. 论文笔记之:Active Object Localization with Deep Reinforcement Learning

    Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...

  8. 增强学习(Reinforcement Learning and Control)

    增强学习(Reinforcement Learning and Control)  [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...

  9. Deep Reinforcement Learning for Dialogue Generation 论文阅读

    本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...

随机推荐

  1. 个人认为最好的Mac端的视频播放软件___movist

    http://pan.baidu.com/s/1kVm0Zmn password : y9rn 点击打开链接 http://pan.baidu.com/s/1i4ABval password :kt3 ...

  2. 前馈神经网络-反向传播(Back Propagation)公式推导走读

        构造:输入神经元个数等于输入向量维度,输出神经元个数等于输出向量维度.(x1=(1,2,3),则需要三个输入神经元)   一 前向后传播   隐层:

  3. 初学Java scirpt(判断、循环语句)

    在编写代码时,我们经常需要为不同的判断结果来执行不同的动作以及需要反复执行同一段代码,这时我们就需要使用判断和循环语句来实现. 1.判断语句(if) 判断语句经常用的有(if......else).( ...

  4. Cookie中文乱码问题

    页面一登录,页面二保存用户信息,放入Cookies里. 但是Cookies放入中文会引起编码问题,如报错“Control character in cookie value, consider BAS ...

  5. 现有‘abcdefghijkl’12个字符,将其所有的排列按字典序进行排序,给出任意一组排列,说出这租排列在所有排列中是第几小的

    题目: 现有‘abcdefghijkl’12个字符,将其所有的排列按字典序进行排序,给出任意一组排列,说出这租排列在所有排列中是第几小的 据说这道题是百度校招的一道算法题,反正我觉得我在学校的时候很可 ...

  6. JS中直接调用后台静态方法

    这两天在维护一个很久之前的老项目,需要在jsp中增加显示一些新的模块,需要连表查询数据库返回数据 最开始想到的是用ajax,但是由于项目十几年前的老项目(jsp页面都是最原始的拼接组成,没有单独的js ...

  7. 初识Kafka----------Centos上单机部署、服务启动、JAVA客户端调用

    作为Apach下一个优秀的开源消息队列框架,Kafka已经成为很多互联网厂商日志采集处理的第一选择.后面在实际应用场景中可能会应用到,因此就先了解了一下.经过两个晚上的努力,总算是能够基本使用. 操作 ...

  8. focus、blur事件的事件委托处理(兼容各个流浏览器)

    今天工作中遇到个问题,问题是这样的,一个form表单中有比较多的input标签,因为form中的input标签中的值都需要前端做客户端校验,由于本人比较懒而且特不喜欢用循环给 每个input元素添加b ...

  9. spring、spring mvc、mybatis框架整合基本知识

    学习了一个多月的框架知识了,这两天很想将它整合一下.网上看了很多整合案例,基本都是基于Eclipse的,但现在外面公司基本都在用Intellij IDEA了,所以结合所学知识,自己做了个总结,有不足之 ...

  10. iOS开发tips-UINavigationBar的切换

    概述 在iOS系统中,如果控制器是以push方式进行管理的话,那么事实上多个控制器是共享的同一个导航栏.当然iOS系统的设计无可厚非,但是国内的应用经常会遇到很多个性的设计,就比如说A push到 B ...