Reinforcement Learning in R
Reinforcement learning has gained considerable traction as it mines real experiences with the help of trial-and-error learning to model decision-making. Thus, this approach attempts to imitate the fundamental method used by humans of learning optimal behavior without the requirement of an explicit model of the environment. In contrast to many other approaches from the domain of machine learning, reinforcement learning works well with learning tasks of arbitrary length and can be used to learn complex strategies for many scenarios, such as robotics and game playing.
Our slide deck is positioned at the intersection of teaching the basic idea of reinforcement learning and providing practical insights into R. While existing packages, such as MDPtoolbox, are well suited to tasks that can be formulated as a Markov decision process, we also provide practical guidance regarding how to set up reinforcement learning in more vague environments. Therefore, each algorithm comes with an easy-to-understand explanation of how to use it in R.
We hope that the slide deck enables practitioners to quickly adopt reinforcement learning for their applications in R. Moreover, the materials might lay the groundwork for courses on human decision-making and machine learning.
Download the slides here
Download the exercise sheet here (solutions are available on request)
Reinforcement Learning in R的更多相关文章
- Awesome Reinforcement Learning
Awesome Reinforcement Learning A curated list of resources dedicated to reinforcement learning. We h ...
- Machine Learning Algorithms Study Notes(5)—Reinforcement Learning
Reinforcement Learning 对于控制决策问题的解决思路:设计一个回报函数(reward function),如果learning agent(如上面的四足机器人.象棋AI程序)在决定 ...
- (zhuan) Deep Reinforcement Learning Papers
Deep Reinforcement Learning Papers A list of recent papers regarding deep reinforcement learning. Th ...
- (转) Deep Learning Research Review Week 2: Reinforcement Learning
Deep Learning Research Review Week 2: Reinforcement Learning 转载自: https://adeshpande3.github.io/ad ...
- 论文笔记之:Asynchronous Methods for Deep Reinforcement Learning
Asynchronous Methods for Deep Reinforcement Learning ICML 2016 深度强化学习最近被人发现貌似不太稳定,有人提出很多改善的方法,这些方法有很 ...
- 论文笔记之:Playing Atari with Deep Reinforcement Learning
Playing Atari with Deep Reinforcement Learning <Computer Science>, 2013 Abstract: 本文提出了一种深度学习方 ...
- 论文笔记之:Active Object Localization with Deep Reinforcement Learning
Active Object Localization with Deep Reinforcement Learning ICCV 2015 最近Deep Reinforcement Learning算 ...
- 增强学习(Reinforcement Learning and Control)
增强学习(Reinforcement Learning and Control) [pdf版本]增强学习.pdf 在之前的讨论中,我们总是给定一个样本x,然后给或者不给label y.之后对样本进行 ...
- Deep Reinforcement Learning for Dialogue Generation 论文阅读
本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但 ...
随机推荐
- XML查询
XPath是XML的查询语言,其内容相当复杂.可以查阅www.w3.org/TR/xpath. 下面以一个实例简单了解一线XPath的查询方法: public partial class Form1 ...
- SQL入门之条件表达式
where子句和having子句主要是用来筛选符合条件的元组,其后紧跟的即为条件表达式. 0.and, or条件的连接 用法和一般编程语言一样,主要用于条件的拼接.and两边都为真,则结果为真.or两 ...
- 跟着刚哥梳理java知识点——包装类(十)
Java为8种基本数据类型都提供了对应的包装器类型 装箱和拆箱: public class Main { public static void main(String[] args) { Intege ...
- 自动生成数学题型二(框架struts2)题型如((a+b)*c=d)
1. 生成题目 1.1 生成单个题目 public static String[] twoOperatorAndOperator(int num1, int num2) { double first ...
- Linq 查询与普通查询的区别
普通:select * --1 from User(表名) as u --2 where u.Name like '%s%' --3 Linq : from User(表名) as u --1 whe ...
- centeOS6.5 RPM方式安装MySQL5.6
RPM方式安装MySQL5.6 a. 检查MySQL及相关RPM包,是否安装,如果有安装,则移除(rpm –e 名称) 1 [root@localhost ~]# rpm -qa | grep -i ...
- 【lucene系列学习二】Lucene实现高亮显示关键词
首先,导入下图所示库 然后,import org.apache.lucene.search.highlight.*; 下面,我们新建一个实现高亮显示功能的函数 public static String ...
- struts2标签库----控制标签详解
前面几篇文章我们介绍了有关struts2的基本内容,简单理解了整个框架的运作流程.从本篇开始我们逐渐了解和使用struts2为我们提供的标签库技术,使用这些标签可以大大降低我们表现层的开发难 ...
- linux 内核的futex - requeue 以及 requeue-pi
futex为更好支持pthread_cond的实现(,最主要是broadcast),设计了requeue功能,并以futex系统调用提供操作接口,包括一对配对的操作 futex_wait_requeu ...
- IOS的Application以及IOS目录的介绍
1.UIApplication介绍 .UIApplication对象是应用程序的象征 .每一个应用都有自己的UIApplication对象,而且是单例的 .通过[UIApplication share ...