hive 的分隔符、orderby sort by distribute by的优化
一、Hive 分号字符
分号是SQL语句结束标记,在HiveQL中也是,可是在HiveQL中,对分号的识别没有那么智慧,比如:
select concat(cookie_id,concat(';',’zoo’)) fromc02_clickstat_fatdt1 limit 2;
FAILED: Parse Error: line 0:-1 cannot recognize input'<EOF>' in function specification
能够判断,Hive解析语句的时候,仅仅要遇到分号就觉得语句结束,而不管是否用引號包括起来。
解决的办法是,使用分号的八进制的ASCII码进行转义,那么上述语句应写成:
select concat(cookie_id,concat('\073','zoo')) fromc02_clickstat_fatdt1 limit 2;
为什么是八进制ASCII码?
我尝试用十六进制的ASCII码,但Hive会将其视为字符串处理并未转义,好像仅支持八进制,原因不详。这个规则也适用于其它非SELECT语句,如CREATE TABLE中须要定义分隔符,那么对不可见字符做分隔符就须要用八进制的ASCII码来转义。
二、insert 新增数据
依据语法Insert必须加“OVERWRITE”keyword,也就是说每一次插入都是一次重写。那怎样实现表中新增数据呢?
如果Hive中有表manbu,
hive> DESCRIBE manbu;
id int
value int
hive> SELECT * FROM manbu;
3 4
1 2
2 3
现添加一条记录:
hive> INSERT OVERWRITE TABLE manbu
SELECT id, value FROM (
SELECT id, value FROM manbu
UNION ALL
SELECT 4 AS id, 5 AS value FROM manbu limit 1
) u;
结果是:
hive>SELECT * FROM p1;
3 4
4 5
2 3
1 2
当中的关键在于, keywordUNION ALL的应用, 即将原有数据集和新增数据集进行结合, 然后重写表.
三、初始值
INSERT OVERWRITE TABLE在插入数据时, 后面的字段的初始值应注意与表定义中的一致性. 比如, 当为一个STRING类型字段初始为NULL时:
NULL AS field_name // 这可能会被提示定义类型为STRING, 但这里是void
CAST(NULL AS STRING) AS field_name // 这样是正确的
又如, 为一个BIGINT类型的字段初始为0时:
CAST(0 AS BIGINT) AS field_name
四、orderby sort by distribute by的优化
Hive的排序keyword是SORT BY,它有意差别于传统数据库的ORDER BY也是为了强调两者的差别–SORT BY仅仅能在单机范围内排序。
比如:
set mapred.reduce.tasks=2;(设置reduce的数量为2 )
原值:
1.selectcookie_id,page_id,id from c02_clickstat_fatdt1
where cookie_idIN('1.193.131.218.1288611279693.0','1.193.148.164.1288609861509.2')
1.193.148.164.1288609861509.2 113181412886099008861288609901078194082403 684000005
1.193.148.164.1288609861509.2 127001128860563972141288609859828580660473 684000015
1.193.148.164.1288609861509.2 113181412886099165721288609915890452725326 684000018
1.193.131.218.1288611279693.0 01c183da6e4bc50712881288611540109914561053 684000114
1.193.131.218.1288611279693.0 01c183da6e4bc22412881288611414343558274174 684000118
1.193.131.218.1288611279693.0 01c183da6e4bc50712881288611511781996667988 684000121
1.193.131.218.1288611279693.0 01c183da6e4bc22412881288611523640691739999 684000126
1.193.131.218.1288611279693.0 01c183da6e4bc50712881288611540109914561053 684000128
2. selectcookie_id,page_id,id from c02_clickstat_fatdt1 where
cookie_idIN('1.193.131.218.1288611279693.0','1.193.148.164.1288609861509.2')
SORT BYCOOKIE_ID,PAGE_ID;
SORT排序后的值
1.193.131.218.1288611279693.0 684000118 01c183da6e4bc22412881288611414343558274174 684000118
1.193.131.218.1288611279693.0 684000114 01c183da6e4bc50712881288611540109914561053 684000114
1.193.131.218.1288611279693.0 684000128 01c183da6e4bc50712881288611540109914561053 684000128
1.193.148.164.1288609861509.2 684000005 113181412886099008861288609901078194082403 684000005
1.193.148.164.1288609861509.2 684000018 113181412886099165721288609915890452725326 684000018
1.193.131.218.1288611279693.0 684000126 01c183da6e4bc22412881288611523640691739999 684000126
1.193.131.218.1288611279693.0 684000121 01c183da6e4bc50712881288611511781996667988 684000121
1.193.148.164.1288609861509.2 684000015 127001128860563972141288609859828580660473 684000015
selectcookie_id,page_id,id from c02_clickstat_fatdt1
where cookie_idIN('1.193.131.218.1288611279693.0','1.193.148.164.1288609861509.2')
ORDER BYPAGE_ID,COOKIE_ID;
1.193.131.218.1288611279693.0 684000118 01c183da6e4bc22412881288611414343558274174 684000118
1.193.131.218.1288611279693.0 684000126 01c183da6e4bc22412881288611523640691739999 684000126
1.193.131.218.1288611279693.0 684000121 01c183da6e4bc50712881288611511781996667988 684000121
1.193.131.218.1288611279693.0 684000114 01c183da6e4bc50712881288611540109914561053 684000114
1.193.131.218.1288611279693.0 684000128 01c183da6e4bc50712881288611540109914561053 684000128
1.193.148.164.1288609861509.2 684000005 113181412886099008861288609901078194082403 684000005
1.193.148.164.1288609861509.2 684000018 113181412886099165721288609915890452725326 684000018
1.193.148.164.1288609861509.2 684000015 127001128860563972141288609859828580660473 684000015
能够看到SORT和ORDER排序出来的值不一样。一開始我指定了2个reduce进行数据分发(各自进行排序)。结果不一样的主要原因是上述查询没有reduce key,hive会生成随机数作为reduce key。这种话输入记录也随机地被分发到不同reducer机器上去了。为了保证reducer之间没有反复的cookie_id记录,能够使用DISTRIBUTE BYkeyword指定分发key为cookie_id。
selectcookie_id,country,id,page_id,id from c02_clickstat_fatdt1 where cookie_idIN('1.193.131.218.1288611279693.0','1.193.148.164.1288609861509.2') distribute by cookie_id SORT BY COOKIE_ID,page_id;
1.193.131.218.1288611279693.0 684000118 01c183da6e4bc22412881288611414343558274174 684000118
1.193.131.218.1288611279693.0 684000126 01c183da6e4bc22412881288611523640691739999 684000126
1.193.131.218.1288611279693.0 684000121 01c183da6e4bc50712881288611511781996667988 684000121
1.193.131.218.1288611279693.0 684000114 01c183da6e4bc50712881288611540109914561053 684000114
1.193.131.218.1288611279693.0 684000128 01c183da6e4bc50712881288611540109914561053 684000128
1.193.148.164.1288609861509.2 684000005 113181412886099008861288609901078194082403 684000005
1.193.148.164.1288609861509.2 684000018 113181412886099165721288609915890452725326 684000018
1.193.148.164.1288609861509.2 684000015 127001128860563972141288609859828580660473 684000015
例二:
CREATETABLE if not exists t_order(
id int,-- 编号
sale_idint, -- SID
customer_idint, -- CID
product_id int, -- PID
amountint -- 数量
)PARTITIONED BY (ds STRING);
在表中查询全部记录,并依照PID和数量排序:
setmapred.reduce.tasks=2;
Selectsale_id, amount from t_order
Sort bysale_id, amount;
这一查询可能得到非期望的排序。指定的2个reducer分发到的数据可能是(各自排序):
Reducer1:
Sale_id |amount
0 | 100
1 | 30
1 | 50
2 | 20
Reducer2:
Sale_id |amount
0 |110
0 | 120
3 | 50
4 | 20
使用DISTRIBUTE BYkeyword指定分发key为sale_id。改造后的HQL例如以下:
setmapred.reduce.tasks=2;
Selectsale_id, amount from t_order
Distributeby sale_id
Sort bysale_id, amount;
这样可以保证查询的销售记录集合中,销售ID相应的数量是正确排序的,可是销售ID不能正确排序,原因是hive使用hadoop默认的HashPartitioner分发数据。
这就涉及到一个全排序的问题。解决的办法无外乎两种:
1.) 不分发数据,使用单个reducer:
setmapred.reduce.tasks=1;
这一方法的缺陷在于reduce端成为了性能瓶颈,并且在数据量大的情况下一般都无法得到结果。可是实践中这仍然是最经常使用的方法,原因是通常排序的查询是为了得到排名靠前的若干结果,因此能够用limit子句大大降低数据量。使用limit n后,传输到reduce端(单机)的数据记录数就降低到n* (map个数)。
2.) 改动Partitioner,这样的方法能够做到全排序。这里能够使用Hadoop自带的TotalOrderPartitioner(来自于Yahoo!的TeraSort项目),这是一个为了支持跨reducer分发有序数据开发的Partitioner,它须要一个SequenceFile格式的文件指定分发的数据区间。假设我们已经生成了这一文件(存储在/tmp/range_key_list,分成100个reducer),能够将上述查询改写为
setmapred.reduce.tasks=100;
sethive.mapred.partitioner=org.apache.hadoop.mapred.lib.TotalOrderPartitioner;
settotal.order.partitioner.path=/tmp/ range_key_list;
Selectsale_id, amount from t_order
Clusterby sale_id
Sort byamount;
有非常多种方法生成这一区间文件(比如hadoop自带的o.a.h.mapreduce.lib.partition.InputSampler工具)。这里介绍用Hive生成的方法,比如有一个按id有序的t_sale表:
CREATETABLE if not exists t_sale (
id int,
namestring,
locstring
);
则生成按sale_id分发的区间文件的方法是:
createexternal table range_keys(sale_id int)
rowformat serde
'org.apache.hadoop.hive.serde2.binarysortable.BinarySortableSerDe'
stored as
inputformat
'org.apache.hadoop.mapred.TextInputFormat'
outputformat
'org.apache.hadoop.hive.ql.io.HiveNullValueSequenceFileOutputFormat'
location'/tmp/range_key_list';
insertoverwrite table range_keys
selectdistinct sale_id
fromsource t_sale sampletable(BUCKET 100 OUT OF 100 ON rand()) s
sort bysale_id;
生成的文件(/tmp/range_key_list文件夹下)能够让TotalOrderPartitioner按sale_id有序地分发reduce处理的数据。
区间文件须要考虑的主要问题是数据分发的均衡性,这有赖于对数据深入的理解。
hive 的分隔符、orderby sort by distribute by的优化的更多相关文章
- hive中order by,sort by, distribute by, cluster by作用以及用法
1. order by Hive中的order by跟传统的sql语言中的order by作用是一样的,会对查询的结果做一次全局排序,所以说,只有hive的sql中制定了order by所有的 ...
- [转载]hive中order by,sort by, distribute by, cluster by作用以及用法
1. order by Hive中的order by跟传统的sql语言中的order by作用是一样的,会对查询的结果做一次全局排序,所以说,只有hive的sql中制定了order by所有的 ...
- hive 排序 order by sort by distribute by cluster by
order by: order by是全局排序,受hive.mapred.mode的影响. 使用orderby有一些限制: 1.在严格模式下(hive.mapred.mod ...
- hive中order by,sort by, distribute by, cluster by的用法
1.order by hive中的order by 和传统sql中的order by 一样,对数据做全局排序,加上排序,会新启动一个job进行排序,会把所有数据放到同一个reduce中进行处理,不管数 ...
- hive中order by ,sort by ,distribute by, cluster by 的区别(**很详细**)
hive 查询语法 select [all | distinct] select_ condition, select_ condition from table_name a [join table ...
- Hive 特殊分隔符处理
HIVE特殊分隔符处理 Hive对文件中的分隔符默认情况下只支持单字节分隔符,,默认单字符是\001.当然你也可以在创建表格时指定数据的分割符号.但是如果数据文件中的分隔符是多字符的,如下图: 01| ...
- Hive 默认分隔符
引言 Hive 中的默认分隔符是 ^A (\001) ,这是一种特殊的分隔符,使用的是 ASCII 编码的值,键盘是打不出来的 查看 Hive 默认分隔符文件 Linux 上的文件 以 \001 作为 ...
- Hadoop Hive 中的排序 Order by ,Sort by ,Distribute by以及 Cluster By
order by order by 会对输入做全局排序,因此只有一个reducer(多个reducer无法保证全局有序)只有一个reducer,会导致当输入规模较大时,需要较长的计算时间. set h ...
- [大数据相关] Hive中的全排序:order by,sort by, distribute by
写mapreduce程序时,如果reduce个数>1,想要实现全排序需要控制好map的输出,详见Hadoop简单实现全排序. 现在学了hive,写sql大家都很熟悉,如果一个order by解决 ...
随机推荐
- [LeetCode53]Maximum Subarray
问题: Find the contiguous subarray within an array (containing at least one number) which has the larg ...
- Eclipse热键
Eclipse编辑功能很强大.掌握Eclipse快捷功能.高开发效率.Eclipse中有例如以下一些和编辑相关的快捷键. 1. [ALT+/] 此快捷键为用户编辑的好帮手.能为用户提供 ...
- 由<a href = "#" > 引发的思考
原文:由<a href = "#" > 引发的思考 前阵子在一个移动项目中,通过 <a href = "#" > 的方式 绑定clic ...
- JVM学习(1)——通过实例总结Java虚拟机的运行机制(转)
俗话说,自己写的代码,6个月后也是别人的代码……复习!复习!复习!涉及到的知识点总结如下: JVM的历史 JVM的运行流程简介 JVM的组成(基于 Java 7) JVM调优参数:-Xmx和-Xms ...
- maple 教程
1 初识计算机代数系统Maple 1.1 Maple简说 1980年9月, 加拿大Waterloo大学的符号计算机研究小组成立, 開始了符号计算在计算机上实现的研究项目, 数学软件Maple是这个项目 ...
- 谈话节目APE系列:如何成为技术达人
作为一个程序猿,总有消退的前辈.或更年轻的同行.牛逼的人总是羡慕. 让我们搞自己痛苦的日子 BUG .头发很快结束了抓,人们扫两.修改一行代码.问题得以克服:例如,他们自己开发的十年,少付 10K , ...
- Windows编译Nodejs时遇到 File "configure", line 313 SyntaxError: invalid syntax Failed to create vc project files. 时的解决方法
第一次编译的时候电脑上未安装python,遂下载了python最新版本3.3.3,但是报了下面这个错误. 把python降到2.7.*的版本即可. 我这里测试2.7.6和2.7.3版本可以正常编译.
- Windows Phone 独立存储资源管理器工具
如何使用独立存储资源管理器工具 http://msdn.microsoft.com/zh-CN/library/hh286408(v=vs.92)C:\Program Files (x86)\Micr ...
- Android中部署自己的su
本人博客原文 首先把你的自己的su的放到Android应用程序project的assets文件夹,为了和系统的su区分,我自己的su文件叫做sur. 另外我这里没有考虑x86架构的cpu的手机. 废话 ...
- [6] 算法路 - 双向冒泡排序的Shaker
Shaker序列 –算法 1. 气泡排序的双向进行,先让气泡排序由左向右进行.再来让气泡排序由右往左进行,如此完毕一次排序的动作 2. 使用left与right两个旗标来记录左右两端已排序的元素位置. ...