本文senlie原版的,转载请保留此地址:http://blog.csdn.net/zhengsenlie

set

------------------------------------------------------------------------



全部元素都会依据元素的键值自己主动被排序。

不能够通过 set 的迭代器改变 set 的元素值。由于 set 元素值就是其键值。关系到 set 元素的排列规则。

set<T>::iterator 被定义为底层 RB-tree 的 const_iterator,杜绝写入操作

标准的 STL set 以 RB-tree 为底层机制,就像 stack 以 deque 为底层机制一样



multiset和 set 基本一样。仅仅只是在插入的时候调用的是底层 RB-tree 的 insert_equal(),同意元素反复



演示样例:

struct ltstr
{
bool operator()(const char* s1, const char* s2) const
{
return strcmp(s1, s2) < 0;
}
}; int main()
{
const int N = 6;
const char* a[N] = {"isomer", "ephemeral", "prosaic",
"nugatory", "artichoke", "serif"};
const char* b[N] = {"flat", "this", "artichoke",
"frigate", "prosaic", "isomer"}; set<const char*, ltstr> A(a, a + N);
set<const char*, ltstr> B(b, b + N);
set<const char*, ltstr> C; cout << "Set A: ";
copy(A.begin(), A.end(), ostream_iterator<const char*>(cout, " "));
cout << endl;
cout << "Set B: ";
copy(B.begin(), B.end(), ostream_iterator<const char*>(cout, " "));
cout << endl; cout << "Union: ";
set_union(A.begin(), A.end(), B.begin(), B.end(),
ostream_iterator<const char*>(cout, " "),
ltstr());
cout << endl; cout << "Intersection: ";
set_intersection(A.begin(), A.end(), B.begin(), B.end(),
ostream_iterator<const char*>(cout, " "),
ltstr());
cout << endl; set_difference(A.begin(), A.end(), B.begin(), B.end(),
inserter(C, C.begin()),
ltstr());
cout << "Set C (difference of A and B): ";
copy(C.begin(), C.end(), ostream_iterator<const char*>(cout, " "));
cout << endl;
}

源代码:

#ifndef __SGI_STL_INTERNAL_SET_H
#define __SGI_STL_INTERNAL_SET_H __STL_BEGIN_NAMESPACE #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma set woff 1174
#endif #ifndef __STL_LIMITED_DEFAULT_TEMPLATES
template <class Key, class Compare = less<Key>, class Alloc = alloc>
#else
template <class Key, class Compare, class Alloc = alloc>
#endif
class set {
public:
// typedefs:
//key_type 和 value_type 的类型是一样的
typedef Key key_type;
typedef Key value_type;
//key_compare 和 value_compare 也用到了同一个比較函数
typedef Compare key_compare;
typedef Compare value_compare;
private:
//底层採用红黑树来实现 set --> 參见 Effective C++ ,这是利用了 Composition 的 is-implimented-in-terms-of 的功能
typedef rb_tree<key_type, value_type,
identity<value_type>, key_compare, Alloc> rep_type;
rep_type t; // red-black tree representing set
public:
typedef typename rep_type::const_pointer pointer;
typedef typename rep_type::const_pointer const_pointer;
typedef typename rep_type::const_reference reference;
typedef typename rep_type::const_reference const_reference;
//set 的 iterator 定义为红黑树的 const_iterator,这表示 set 的迭代器无法运行写入操作。
//这是由于 set 的元素有一定次序安排,不同意用户在随意处进行写入操作
typedef typename rep_type::const_iterator iterator;
typedef typename rep_type::const_iterator const_iterator;
typedef typename rep_type::const_reverse_iterator reverse_iterator;
typedef typename rep_type::const_reverse_iterator const_reverse_iterator;
typedef typename rep_type::size_type size_type;
typedef typename rep_type::difference_type difference_type; // allocation/deallocation
// set 一定要使用 RB-tree 的 insert-unique() 。这样当要插入
//已经存在的键值时,会选择忽略 set() : t(Compare()) {} // 传递 Compare() 产生的函数对象给底层的红黑树作为初始化时设定的比較函数
explicit set(const Compare& comp) : t(comp) {} #ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
set(InputIterator first, InputIterator last)
: t(Compare()) { t.insert_unique(first, last); } template <class InputIterator>
set(InputIterator first, InputIterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
#else
set(const value_type* first, const value_type* last)
: t(Compare()) { t.insert_unique(first, last); }
set(const value_type* first, const value_type* last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); } set(const_iterator first, const_iterator last)
: t(Compare()) { t.insert_unique(first, last); }
set(const_iterator first, const_iterator last, const Compare& comp)
: t(comp) { t.insert_unique(first, last); }
#endif /* __STL_MEMBER_TEMPLATES */ set(const set<Key, Compare, Alloc>& x) : t(x.t) {}
set<Key, Compare, Alloc>& operator=(const set<Key, Compare, Alloc>& x) {
t = x.t; // 调用了底层红黑树的 operator= 函数
return *this;
} //下面全部的 set 操作行为,RB-tree 都已提供,所以 set 仅仅要调用就可以
// accessors: key_compare key_comp() const { return t.key_comp(); }
value_compare value_comp() const { return t.key_comp(); }
iterator begin() const { return t.begin(); }
iterator end() const { return t.end(); }
reverse_iterator rbegin() const { return t.rbegin(); }
reverse_iterator rend() const { return t.rend(); }
bool empty() const { return t.empty(); }
size_type size() const { return t.size(); }
size_type max_size() const { return t.max_size(); }
void swap(set<Key, Compare, Alloc>& x) { t.swap(x.t); } // insert/erase
typedef pair<iterator, bool> pair_iterator_bool;
pair<iterator,bool> insert(const value_type& x) {
pair<typename rep_type::iterator, bool> p = t.insert_unique(x);
return pair<iterator, bool>(p.first, p.second);
}
iterator insert(iterator position, const value_type& x) {
typedef typename rep_type::iterator rep_iterator;
return t.insert_unique((rep_iterator&)position, x);
}
#ifdef __STL_MEMBER_TEMPLATES
template <class InputIterator>
void insert(InputIterator first, InputIterator last) {
t.insert_unique(first, last);
}
#else
void insert(const_iterator first, const_iterator last) {
t.insert_unique(first, last);
}
void insert(const value_type* first, const value_type* last) {
t.insert_unique(first, last);
}
#endif /* __STL_MEMBER_TEMPLATES */
void erase(iterator position) {
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)position);
}
size_type erase(const key_type& x) {
return t.erase(x);
}
void erase(iterator first, iterator last) {
typedef typename rep_type::iterator rep_iterator;
t.erase((rep_iterator&)first, (rep_iterator&)last);
}
void clear() { t.clear(); } // set operations: iterator find(const key_type& x) const { return t.find(x); }
size_type count(const key_type& x) const { return t.count(x); }
iterator lower_bound(const key_type& x) const {
return t.lower_bound(x);
}
iterator upper_bound(const key_type& x) const {
return t.upper_bound(x);
}
pair<iterator,iterator> equal_range(const key_type& x) const {
return t.equal_range(x);
}
friend bool operator== __STL_NULL_TMPL_ARGS (const set&, const set&);
friend bool operator< __STL_NULL_TMPL_ARGS (const set&, const set&);
}; template <class Key, class Compare, class Alloc>
inline bool operator==(const set<Key, Compare, Alloc>& x,
const set<Key, Compare, Alloc>& y) {
return x.t == y.t;
} template <class Key, class Compare, class Alloc>
inline bool operator<(const set<Key, Compare, Alloc>& x,
const set<Key, Compare, Alloc>& y) {
return x.t < y.t;
} #ifdef __STL_FUNCTION_TMPL_PARTIAL_ORDER template <class Key, class Compare, class Alloc>
inline void swap(set<Key, Compare, Alloc>& x,
set<Key, Compare, Alloc>& y) {
x.swap(y);
} #endif /* __STL_FUNCTION_TMPL_PARTIAL_ORDER */ #if defined(__sgi) && !defined(__GNUC__) && (_MIPS_SIM != _MIPS_SIM_ABI32)
#pragma reset woff 1174
#endif __STL_END_NAMESPACE #endif /* __SGI_STL_INTERNAL_SET_H */ // Local Variables:
// mode:C++
// End:

版权声明:本文博主原创文章。博客,未经同意不得转载。

STL源代码分析 集装箱 stl_set.h的更多相关文章

  1. 《STL源代码剖析》---stl_set.h阅读笔记

    SET是STL中的标准容器,SET里面的元素会依据键值自己主动排序,它不像map那样拥有实值value和键值key的相应,set仅仅有实值.SET的底层实现时RB-tree,当插入到RB-tree中后 ...

  2. 《STL源代码分析》---stl_heap.h读书笔记

    Heap堆的数据结构是经常使用,Heap它还能够存储元件的.但STL并且不提供Heap集装箱.仅仅提供信息Heap算术运算.只支持RandomAccessIterator该容器可以被用作Heap集装箱 ...

  3. STL 源代码分析 算法 stl_algo.h -- includes

    本文senlie原,转载请保留此地址:http://blog.csdn.net/zhengsenlie includes(应用于有序区间) ------------------------------ ...

  4. STL 源代码分析 算法 stl_heap.h

    本文senlie原版的.转载请保留此地址:http://blog.csdn.net/zhengsenlie heap ----------------------------------------- ...

  5. 《STL源代码分析》---stl_list.h读书笔记

    STL在列表list它是一种经常使用的容器.list不连续双向链表在内存,而且是环形. 理解列表如何操作的详细信息,然后.阅读STL名单上的代码是最好的方法. G++ 2.91.57.cygnus\c ...

  6. 《STL源代码分析》---stl_stack.h读书笔记

    Stack堆栈是频繁使用FILO数据结构,FILO指first in last out,最后出来. 因为只有一个堆叠端口,这也是在口腔进入口. 可以在堆栈中只能操作,你不能访问其它元件的堆叠.器. S ...

  7. STL 源代码分析 算法 stl_algo.h -- merge

    本文senlie原版的,转载请保留此地址:http://blog.csdn.net/zhengsenlie merge (应用于有序区间) ------------------------------ ...

  8. STL 源代码分析 算法 stl_algo.h -- binary_search

    本文为senlie原创.转载请保留此地址:http://blog.csdn.net/zhengsenlie binary_search -------------------------------- ...

  9. STL 源代码分析 算法 stl_algo.h -- pre_permutation

    本文senlie原版的,转载请保留此地址:http://blog.csdn.net/zhengsenlie pre_permutation ------------------------------ ...

随机推荐

  1. WPF与混淆器

    原文:WPF与混淆器 时至今日,混淆依然是.Net程序的一道重要保护手段,而混淆器对WPF应用程序的支持是怎样的呢?我们今天就通过实例讲解一下. 首先建立如下图所示的简单的用户界面: 在界面代码中设置 ...

  2. SessionFactory的创建和Session的获得

    1.当我们调用 Configuration config=new Configuration().configure(); 时候Hibernate会自己主动在当前的CLASSPATH中搜寻hibern ...

  3. MVC的DependencyResolver组件

    MVC的DependencyResolver组件 一.前言 DependencyResolver是MVC中一个重要的组件,从名字可以看出,它负责依赖对象的解析,可以说它是MVC框架内部使用的一个IOC ...

  4. 2-07. 素因子分解(20) (ZJUPAT 数学)

    题目链接:http://pat.zju.edu.cn/contests/ds/2-07 给定某个正整数N,求其素因子分解结果,即给出其因式分解表达式 N = p1^k1 * p2^k2 *-*pm ^ ...

  5. 使用AngularJS开发下一代Web应用

    原版的:https://github.com/edagarli/AngularJSWeb 来源书:https://github.com/shyamseshadri/angularjs-book 版权声 ...

  6. lambda left join .DefaultIfEmpty

    我们知道lambda表达式在Linq to sql 和 Entity framework 中使用join函数可以实现inner join,那么怎么才能在lambda表达式中实现left join呢?秘 ...

  7. Leetcode 3Sum Closet

    二手和3Sum像几乎相同的想法.二进制搜索.关键修剪.但是,在修剪做出很多错误. 然后还有一个更加速了原来的想法O(n^2). #include<iostream> #include &l ...

  8. Word001

    C# Word 类库 2009-08-06 22:10 13470人阅读 评论(10) 收藏 举报 c#objectstring文档microsoftexcel using System;using ...

  9. 水声通信(传声)于iOS、Android在情景-depth分析(包括一些声通信源)

    最近的水声通信非常热,特别是,非常嵌入式设备备受瞩目使用,前段时间公布了声通信部分源代码(iOS和Android版本号.下载源的最新版本:点击打开链接 http://download.csdn.net ...

  10. 微信开放平台 公众号第三方平台开发 教程四 代公众号调用接口的SDK和demo

    原文:微信开放平台 公众号第三方平台开发 教程四 代公众号调用接口的SDK和demo 教程导航: 微信开放平台 公众号第三方平台开发 教程一 平台介绍 微信开放平台 公众号第三方平台开发 教程二 创建 ...