<转>卷积神经网络是如何学习到平移不变的特征
After some thought, I do not believe that pooling operations are responsible for the translation invariant property in CNNs. I believe that invariance (at least to translation) is due to the convolution filters (not specifically the pooling) and due to the fully-connected layer.
For instance, let's use the Fig. 1 as reference:
The blue volume represents the input image, while the green and yellow volumes represent layer 1 and layer 2 output activation volumes (see CS231n Convolutional Neural Networks for Visual Recognition if you are not familiar with these volumes). At the end, we have a fully-connected layer that is connected to all activation points of the yellow volume.
These volumes are build using a convolution plus a pooling operation. The pooling operation reduces the height and width of these volumes, while the increasing number of filters in each layer increases the volume depth.
For the sake of the argument, let's suppose that we have very "ludic" filters, as show in Fig. 2:
- the first layer filters (which will generate the green volume) detect eyes, noses and other basic shapes (in real CNNs, first layer filters will match lines and very basic textures);
- The second layer filters (which will generate the yellow volume) detect faces, legs and other objects that are aggregations of the first layer filters. Again, this is only an example: real life convolution filters may detect objects that have no meaning to humans.
Now suppose that there is a face at one of the corners of the image (represented by two red and a magenta point). The two eyes are detected by the first filter, and therefore will represent two activations at the first slice of the green volume. The same happens for the nose, except that it is detected for the second filter and it appears at the second slice. Next, the face filter will find that there are two eyes and a nose next to each other, and it generates an activation at the yellow volume (within the same region of the face at the input image). Finally, the fully-connected layer detects that there is a face (and maybe a leg and an arm detected by other filters) and it outputs that it has detected an human body.
Now suppose that the face has moved to another corner of the image, as shown in Fig. 3:
The same number of activations occurs in this example, however they occur in a different region of the green and yellow volumes. Therefore, any activation point at the first slice of the yellow volume means that a face was detected, INDEPENDENTLY of the face location. Then the fully-connected layer is responsible to "translate" a face and two arms to an human body. In both examples, an activation was received at one of the fully-connected neurons. However, in each example, the activation path inside the FC layer was different, meaning that a correct learning at the FC layer is essential to ensure the invariance property.
It must be noticed that the polling operation only "compresses" the activation volumes, if there was no polling in this example, an activation at the first slice of the yellow volume would still mean a face.
In conclusion, what makes a CNN invariant to object translation is the architecture of the neural network: the convolution filters and the fully-connected layer. Additionally, I believe that if a CNN is trained showing faces only at one corner, during the learning process, the fully-connected layer may become insensitive to faces in other corners.
source:
<转>卷积神经网络是如何学习到平移不变的特征的更多相关文章
- 深度学习之卷积神经网络(CNN)
卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也 ...
- TensorFlow学习笔记(四)图像识别与卷积神经网络
一.卷积神经网络简介 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. ...
- 经典卷积神经网络的学习(一)—— AlexNet
AlexNet 为卷积神经网络和深度学习正名,以绝对优势拿下 ILSVRC 2012 年冠军,引起了学术界的极大关注,掀起了深度学习研究的热潮. AlexNet 在 ILSVRC 数据集上达到 16. ...
- 【RS】Automatic recommendation technology for learning resources with convolutional neural network - 基于卷积神经网络的学习资源自动推荐技术
[论文标题]Automatic recommendation technology for learning resources with convolutional neural network ( ...
- Python CNN卷积神经网络代码实现
# -*- coding: utf-8 -*- """ Created on Wed Nov 21 17:32:28 2018 @author: zhen "& ...
- Python之TensorFlow的卷积神经网络-5
一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...
- TensorFlow实战之实现AlexNet经典卷积神经网络
本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...
- 卷积神经网络之AlexNet
由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷 ...
- 卷积神经网络(CNN)基础介绍
本文是对卷积神经网络的基础进行介绍,主要内容包含卷积神经网络概念.卷积神经网络结构.卷积神经网络求解.卷积神经网络LeNet-5结构分析.卷积神经网络注意事项. 一.卷积神经网络概念 上世纪60年代. ...
随机推荐
- 全文检索学习历程目录结构(Lucene、ElasticSearch)
1.目录 (1) Apache Lucene(全文检索引擎)—创建索引:http://www.cnblogs.com/hanyinglong/p/5387816.html (2) Apache Luc ...
- 【HTML DOM】Node.nodeValue的用法
目录结构: // contents structure [-] 语法 注意 详述 实例 参考文章 Note.noteValue 属性返回或设置当前属性的值. 语法 value = node.nodeV ...
- jquery实现多级下拉菜单
支持多种浏览器,体验效果:http://keleyi.com/keleyi/phtml/jqmenu/4.htm 多级菜单,理论上支持无限多的层级,文件结构非常简单的,以下是完整代码: <!DO ...
- ae 地理坐标与投影坐标转换 [转]
转载地址:http://blog.163.com/lai_xiao_hui/blog/static/123037324201151443221942/ 代码是将WGS84地理坐标转换为WGS84UTM ...
- 视图xsl定制之嵌入服务器控件
SharePoint 2010 视图 xsl 文件中支持嵌入服务器控件,嵌入服务器控件时,系统先采用xsl将视图xml解析成一个类似UserControl的存在,然后执行UserControl. 代码 ...
- Handler.sendMessage 与 Handler.obtainMessage.sendToTarget比较
原文地址: http://www.cnblogs.com/android007/archive/2012/05/10/2494766.html 话说在工作中第一次接触android 的Handler ...
- 实现Discuz论坛客户端应用源码
通过使用该源码,开发者可以迅速地将Discuz论坛迁移到Android客户端中.不需要任何的开发工作即可拥有属于自己论坛的Android客户端 源码下载:http://code.662p.com/vi ...
- android handler传递消息机制
当工作线程给主线程发送消息时,因为主线程是有looper的,所以不需要初始化looper,注意给谁发消息就关联谁的handler,此时用的就是主线程的handler handler会把消息发送到Mes ...
- python之(re)正则表达式下
知识储备: \w 匹配任何字母/数字,下划线 正则表达式进阶: re.match('com', 'comwww.runcomoob') re.search('\dcom', 'www.4comruno ...
- 通过LoadRunner - Analyze详细分析页面元素请求
众所周知LoadRunner录制某个链接,包括动态请求与js.css.jpg等静态请求. web_custom_request("动态请求", "URL=http://w ...