After some thought, I do not believe that pooling operations are responsible for the translation invariant property in CNNs. I believe that invariance (at least to translation) is due to the convolution filters (not specifically the pooling) and due to the fully-connected layer.

For instance, let's use the Fig. 1 as reference:

The blue volume represents the input image, while the green and yellow volumes represent layer 1 and layer 2 output activation volumes (see CS231n Convolutional Neural Networks for Visual Recognition if you are not familiar with these volumes). At the end, we have a fully-connected layer that is connected to all activation points of the yellow volume.

These volumes are build using a convolution plus a pooling operation. The pooling operation reduces the height and width of these volumes, while the increasing number of filters in each layer increases the volume depth.

For the sake of the argument, let's suppose that we have very "ludic" filters, as show in Fig. 2:

  • the first layer filters (which will generate the green volume) detect eyes, noses and other basic shapes (in real CNNs, first layer filters will match lines and very basic textures);
  • The second layer filters (which will generate the yellow volume) detect faces, legs and other objects that are aggregations of the first layer filters. Again, this is only an example: real life convolution filters may detect objects that have no meaning to humans.

Now suppose that there is a face at one of the corners of the image (represented by two red and a magenta point). The two eyes are detected by the first filter, and therefore will represent two activations at the first slice of the green volume. The same happens for the nose, except that it is detected for the second filter and it appears at the second slice. Next, the face filter will find that there are two eyes and a nose next to each other, and it generates an activation at the yellow volume (within the same region of the face at the input image). Finally, the fully-connected layer detects that there is a face (and maybe a leg and an arm detected by other filters) and it outputs that it has detected an human body.

Now suppose that the face has moved to another corner of the image, as shown in Fig. 3:

The same number of activations occurs in this example, however they occur in a different region of the green and yellow volumes. Therefore, any activation point at the first slice of the yellow volume means that a face was detected, INDEPENDENTLY of the face location. Then the fully-connected layer is responsible to "translate" a face and two arms to an human body. In both examples, an activation was received at one of the fully-connected neurons. However, in each example, the activation path inside the FC layer was different, meaning that a correct learning at the FC layer is essential to ensure the invariance property.

It must be noticed that the polling operation only "compresses" the activation volumes, if there was no polling in this example, an activation at the first slice of the yellow volume would still mean a face.

In conclusion, what makes a CNN invariant to object translation is the architecture of the neural network: the convolution filters and the fully-connected layer. Additionally, I believe that if a CNN is trained showing faces only at one corner, during the learning process, the fully-connected layer may become insensitive to faces in other corners.

source:

https://www.quora.com/How-is-a-convolutional-neural-network-able-to-learn-invariant-features/answer/Jean-Da-Rolt

<转>卷积神经网络是如何学习到平移不变的特征的更多相关文章

  1. 深度学习之卷积神经网络(CNN)

    卷积神经网络(CNN)因为在图像识别任务中大放异彩,而广为人知,近几年卷积神经网络在文本处理中也有了比较好的应用.我用TextCnn来做文本分类的任务,相比TextRnn,训练速度要快非常多,准确性也 ...

  2. TensorFlow学习笔记(四)图像识别与卷积神经网络

    一.卷积神经网络简介 卷积神经网络(Convolutional Neural Network,CNN)是一种前馈神经网络,它的人工神经元可以响应一部分覆盖范围内的周围单元,对于大型图像处理有出色表现. ...

  3. 经典卷积神经网络的学习(一)—— AlexNet

    AlexNet 为卷积神经网络和深度学习正名,以绝对优势拿下 ILSVRC 2012 年冠军,引起了学术界的极大关注,掀起了深度学习研究的热潮. AlexNet 在 ILSVRC 数据集上达到 16. ...

  4. 【RS】Automatic recommendation technology for learning resources with convolutional neural network - 基于卷积神经网络的学习资源自动推荐技术

    [论文标题]Automatic recommendation technology for learning resources with convolutional neural network ( ...

  5. Python CNN卷积神经网络代码实现

    # -*- coding: utf-8 -*- """ Created on Wed Nov 21 17:32:28 2018 @author: zhen "& ...

  6. Python之TensorFlow的卷积神经网络-5

    一.卷积神经网络(Convolutional Neural Networks, CNN)是一类包含卷积计算且具有深度结构的前馈神经网络(Feedforward Neural Networks),是深度 ...

  7. TensorFlow实战之实现AlexNet经典卷积神经网络

    本文根据最近学习TensorFlow书籍网络文章的情况,特将一些学习心得做了总结,详情如下.如有不当之处,请各位大拿多多指点,在此谢过. 一.AlexNet模型及其基本原理阐述 1.关于AlexNet ...

  8. 卷积神经网络之AlexNet

    由于受到计算机性能的影响,虽然LeNet在图像分类中取得了较好的成绩,但是并没有引起很多的关注. 知道2012年,Alex等人提出的AlexNet网络在ImageNet大赛上以远超第二名的成绩夺冠,卷 ...

  9. 卷积神经网络(CNN)基础介绍

    本文是对卷积神经网络的基础进行介绍,主要内容包含卷积神经网络概念.卷积神经网络结构.卷积神经网络求解.卷积神经网络LeNet-5结构分析.卷积神经网络注意事项. 一.卷积神经网络概念 上世纪60年代. ...

随机推荐

  1. 功能强大的滚动播放插件JQ-Slide

    查看效果:http://keleyi.com/keleyi/phtml/jqplug/4.htmJQ-Slide插件功能强大,滚动方式自由多样全部滚动方式 方式一 方式二 方式三 方式四 方式五 方式 ...

  2. HTML5树叶飘落动画

    查看效果:http://keleyi.com/keleyi/phtml/css3/15.htm 请使用Chrome浏览器查看本效果. html源代码: <!DOCTYPE HTML> &l ...

  3. JQ中的方法、事件及动画

    css( ) 除了可以为元素添加样式外,还可用来查询元素,某样式值alert($('.cls1').css('width')); //100px(返回带单位的值)注意:原生CSS样式中有-的去掉并且将 ...

  4. [转载]Javascript异步编程的4种方法

    NodeJs的最大特性就是"异步" 目前在NodeJs里实现异步的方法中,使用“回调”是最常见的. 其实还有其他4种实现异步的方法: 在此以做记录 --- http://www.r ...

  5. ALV TREE中双击触发PAI事件的方法

    用事件类实现双击事件,实例化后使用set handler注册到ALV对象.斜体部分为事件方法的具体实现. 代码如下 CLASS lcl_tree_event_receiver DEFINITION. ...

  6. Java Serializable系列化与反系列化

    [引言] 将 Java 对象序列化为二进制文件的 Java 序列化技术是 Java 系列技术中一个较为重要的技术点,在大部分情况下,开发人员只需要了解被序列化的类需要实现 Serializable 接 ...

  7. 聊下 git remote prune origin

    在你经常使用的命令当中有一个git branch –a 用来查看所有的分支,包括本地和远程的.但是时间长了你会发现有些分支在远程其实早就被删除了,但是在你本地依然可以看见这些被删除的分支. 你可以通过 ...

  8. SQL Server 2008 R2——查找最小nIndex,nIndex存在而nIndex+1不存在 求最小连续数组中的最大值

    =================================版权声明================================= 版权声明:原创文章 谢绝转载  请通过右侧公告中的“联系邮 ...

  9. centos 进度条卡死

    CentOS 6.7 系统 在执行完删除更新包的全部操作之后, yum remove -y Deployment_Guide-en-US finger cups-libs cups ypbind &a ...

  10. WPF 自定义ListBox

     如题,要实现一个如下的列表,该如何实现? 在设计过程中,会遇到如下问题: 1.ListBox中ListBoxItem的模板设计 2.ListBox中ListBoxItem的模板容器设计 3.List ...