elasticsearch多字段聚合实现方式
1、背景
我们知道在sql中是可以实现 group by 字段a,字段b,那么这种效果在elasticsearch中该如何实现呢?此处我们记录在elasticsearch中的3种方式来实现这个效果。
2、实现多字段聚合的思路

图片来源:https://www.elastic.co/guide/en/elasticsearch/reference/current/search-aggregations-bucket-terms-aggregation.html
从上图中,我们可以知道,可以通过3种方式来实现 多字段的聚合操作。
3、需求
根据省(province)和性别(sex)来进行聚合,然后根据聚合后的每个桶的数据,在根据每个桶中的最大年龄(age)来进行倒序排序。
4、数据准备
4.1 创建索引
PUT /index_person
{
  "settings": {
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "long"
      },
      "name": {
        "type": "keyword"
      },
      "province": {
        "type": "keyword"
      },
      "sex": {
        "type": "keyword"
      },
      "age": {
        "type": "integer"
      },
      "address": {
        "type": "text",
        "analyzer": "ik_max_word",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      }
    }
  }
}
4.2 准备数据
PUT /_bulk
{"create":{"_index":"index_person","_id":1}}
{"id":1,"name":"张三","sex":"男","age":20,"province":"湖北","address":"湖北省黄冈市罗田县匡河镇"}
{"create":{"_index":"index_person","_id":2}}
{"id":2,"name":"李四","sex":"男","age":19,"province":"江苏","address":"江苏省南京市"}
{"create":{"_index":"index_person","_id":3}}
{"id":3,"name":"王武","sex":"女","age":25,"province":"湖北","address":"湖北省武汉市江汉区"}
{"create":{"_index":"index_person","_id":4}}
{"id":4,"name":"赵六","sex":"女","age":30,"province":"北京","address":"北京市东城区"}
{"create":{"_index":"index_person","_id":5}}
{"id":5,"name":"钱七","sex":"女","age":16,"province":"北京","address":"北京市西城区"}
{"create":{"_index":"index_person","_id":6}}
{"id":6,"name":"王八","sex":"女","age":45,"province":"北京","address":"北京市朝阳区"}
5、实现方式
5.1 multi_terms实现
5.1.1 dsl
GET /index_person/_search
{
  "size": 0,
  "aggs": {
    "agg_province_sex": {
      "multi_terms": {
        "size": 10,
        "shard_size": 25,
        "order":{
          "max_age": "desc"
        },
        "terms": [
          {
            "field": "province",
            "missing": "defaultProvince"
          },
          {
            "field": "sex"
          }
        ]
      },
      "aggs": {
        "max_age": {
          "max": {
            "field": "age"
          }
        }
      }
    }
  }
}
5.1.2 java 代码
    @Test
    @DisplayName("多term聚合-根据省和性别聚合,然后根据最大年龄倒序")
    public void agg01() throws IOException {
        SearchRequest searchRequest = new SearchRequest.Builder()
                .size(0)
                .index("index_person")
                .aggregations("agg_province_sex", agg ->
                        agg.multiTerms(multiTerms ->
                                        multiTerms.terms(term -> term.field("province"))
                                                .terms(term -> term.field("sex"))
                                                .order(new NamedValue<>("max_age", SortOrder.Desc))
                                )
                                .aggregations("max_age", ageAgg ->
                                        ageAgg.max(max -> max.field("age")))
                )
                .build();
        System.out.println(searchRequest);
        SearchResponse<Object> response = client.search(searchRequest, Object.class);
        System.out.println(response);
    }
5.1.3 运行结果

5.2 script实现
5.2.1 dsl
GET /index_person/_search
{
  "size": 0,
  "runtime_mappings": {
    "runtime_province_sex": {
      "type": "keyword",
      "script": """
          String province = doc['province'].value;
          String sex = doc['sex'].value;
          emit(province + '|' + sex);
      """
    }
  },
  "aggs": {
    "agg_province_sex": {
      "terms": {
        "field": "runtime_province_sex",
        "size": 10,
        "shard_size": 25,
        "order": {
          "max_age": "desc"
        }
      },
      "aggs": {
        "max_age": {
          "max": {
            "field": "age"
          }
        }
      }
    }
  }
}
5.2.2 java代码
@Test
    @DisplayName("多term聚合-根据省和性别聚合,然后根据最大年龄倒序")
    public void agg02() throws IOException {
        SearchRequest searchRequest = new SearchRequest.Builder()
                .size(0)
                .index("index_person")
                .runtimeMappings("runtime_province_sex", field -> {
                    field.type(RuntimeFieldType.Keyword);
                    field.script(script -> script.inline(new InlineScript.Builder()
                            .lang(ScriptLanguage.Painless)
                            .source("String province = doc['province'].value;\n" +
                                    "          String sex = doc['sex'].value;\n" +
                                    "          emit(province + '|' + sex);")
                            .build()));
                    return field;
                })
                .aggregations("agg_province_sex", agg ->
                        agg.terms(terms ->
                                        terms.field("runtime_province_sex")
                                                .size(10)
                                                .shardSize(25)
                                                .order(new NamedValue<>("max_age", SortOrder.Desc))
                                )
                                .aggregations("max_age", minAgg ->
                                        minAgg.max(max -> max.field("age")))
                )
                .build();
        System.out.println(searchRequest);
        SearchResponse<Object> response = client.search(searchRequest, Object.class);
        System.out.println(response);
    }
5.2.3 运行结果

5.3 通过copyto实现
我本地测试过,通过copyto没实现,此处故先不考虑
5.5 通过pipeline来实现
实现思路:
创建mapping时,多创建一个字段pipeline_province_sex,该字段的值由创建数据时指定pipeline来生产。
5.4.1 创建mapping
PUT /index_person
{
  "settings": {
    "number_of_shards": 1
  },
  "mappings": {
    "properties": {
      "id": {
        "type": "long"
      },
      "name": {
        "type": "keyword"
      },
      "province": {
        "type": "keyword"
      },
      "sex": {
        "type": "keyword"
      },
      "age": {
        "type": "integer"
      },
      "pipeline_province_sex":{
        "type": "keyword"
      },
      "address": {
        "type": "text",
        "analyzer": "ik_max_word",
        "fields": {
          "keyword": {
            "type": "keyword",
            "ignore_above": 256
          }
        }
      }
    }
  }
}
此处指定了一个字段pipeline_province_sex,该字段的值会由pipeline来处理。
5.4.2 创建pipeline
PUT _ingest/pipeline/pipeline_index_person_provice_sex
{
  "description": "将provice和sex的值拼接起来",
  "processors": [
    {
      "set": {
        "field": "pipeline_province_sex",
        "value": ["{{province}}", "{{sex}}"]
      },
      "join": {
        "field": "pipeline_province_sex",
        "separator": "|"
      }
    }
  ]
}
5.4.3 插入数据
PUT /_bulk?pipeline=pipeline_index_person_provice_sex
{"create":{"_index":"index_person","_id":1}}
{"id":1,"name":"张三","sex":"男","age":20,"province":"湖北","address":"湖北省黄冈市罗田县匡河镇"}
{"create":{"_index":"index_person","_id":2}}
{"id":2,"name":"李四","sex":"男","age":19,"province":"江苏","address":"江苏省南京市"}
{"create":{"_index":"index_person","_id":3}}
{"id":3,"name":"王武","sex":"女","age":25,"province":"湖北","address":"湖北省武汉市江汉区"}
{"create":{"_index":"index_person","_id":4}}
{"id":4,"name":"赵六","sex":"女","age":30,"province":"北京","address":"北京市东城区"}
{"create":{"_index":"index_person","_id":5}}
{"id":5,"name":"钱七","sex":"女","age":16,"province":"北京","address":"北京市西城区"}
{"create":{"_index":"index_person","_id":6}}
{"id":6,"name":"王八","sex":"女","age":45,"province":"北京","address":"北京市朝阳区"}
注意: 此处的插入需要指定上一步的pipeline
PUT /_bulk?pipeline=pipeline_index_person_provice_sex
5.4.4 聚合dsl
GET /index_person/_search
{
  "size": 0,
  "aggs": {
    "agg_province_sex": {
      "terms": {
        "field": "pipeline_province_sex",
        "size": 10,
        "shard_size": 25,
        "order": {
          "max_age": "desc"
        }
      },
      "aggs": {
        "max_age": {
          "max": {
            "field": "age"
          }
        }
      }
    }
  }
}
5.4.5 运行结果

6、实现代码
7、参考文档
elasticsearch多字段聚合实现方式的更多相关文章
- elasticsearch 多字段聚合或者对字段子串聚合
		
以下是字段子串聚合,截取 'your_field' 前八位进行聚合的 Script script = new Script("doc['your_field'].getValue().sub ...
 - Elastic Stack之ElasticSearch分布式集群yum方式搭建
		
Elastic Stack之ElasticSearch分布式集群yum方式搭建 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.搜索引擎及Lucene基本概念 1>.什么 ...
 - ElasticSearch6.0 高级应用之 多字段聚合Aggregation(二)
		
ElasticSearch6.0 多字段聚合网上完整的资料很少 ,所以作者经过查阅资料,编写了聚合高级使用例子 例子是根据电商搜索实际场景模拟出来的 希望给大家带来帮助! 下面我们开始吧! 1. 创建 ...
 - 跟我一起学extjs5(17--Grid金额字段单位MVVM方式的选择)
		
跟我一起学extjs5(17--Grid金额字段单位MVVM方式的选择) 这一节来完毕Grid中的金额字段的金额单位的转换.转换旰使用MVVM特性,整体上和控制菜单的几种模式类似.首先 ...
 - Dynamics CRM  通过Odata创建及更新记录各类型字段的赋值方式
		
CRM中通过Odata方式去创建或者更新记录时,各种类型的字段的赋值方式各不相同,这里转载一篇博文很详细的列出了各类型字段赋值方式,以供后期如有遗忘再次查询使用. http://luoyong0201 ...
 - Elastic Stack之ElasticSearch分布式集群二进制方式部署
		
Elastic Stack之ElasticSearch分布式集群二进制方式部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 想必大家都知道ELK其实就是Elasticsearc ...
 - 修改MySQL数据库中表和表中字段的编码方式的方法
		
今天向MySQL数据库中的一张表添加含有中文的数据,可是老是出异常,检查程序并没有发现错误,无奈呀,后来重新检查这张表发现表的编码方式为latin1并且原想可以插入中文的字段的编码方式也是latin1 ...
 - [Elasticsearch] 多字段搜索 (六) - 自定义_all字段,跨域查询及精确值字段
		
自定义_all字段 在元数据:_all字段中,我们解释了特殊的_all字段会将其它所有字段中的值作为一个大字符串进行索引.尽管将所有字段的值作为一个字段进行索引并不是非常灵活.如果有一个自定义的_al ...
 - ElasticSearch 6.2 Mapping参数说明及text类型字段聚合查询配置
		
背景: 由于本人使用的是6.0以上的版本es,在使用发现很多中文博客对于mapping参数的说明已过时.ES6.0以后有很多参数变化. 现我根据官网总结mapping最新的参数,希望能对大家有用处. ...
 - 【转】elasticsearch中字段类型默认显示{ "foo": { "type": "text",  "fields": { "keyword": {"type": "keyword", "ignore_above": 256} }
		
官方原文链接:https://www.elastic.co/cn/blog/strings-are-dead-long-live-strings 转载原文连接:https://segmentfault ...
 
随机推荐
- 2.窗口部件-对话框QDialog
			
1.模态和非模态 看代码 widget.cpp #include "widget.h" #include "ui_widget.h" #include<Q ...
 - 第五篇:vue.js起步
			
<div id="vue_det"> //使改动全部在指定的 div 内,div 外部不受影响 <h1>site : {{site}}</h1> ...
 - 声明式HTTP客户端-Feign 使用入门详解
			
什么是 OpenFeign OpenFeign (以下统一简称为 Feign) 是 Netflix 开源的声明式 HTTP 客户端,集成了 Ribbon 的负载均衡.轮询算法和 RestTemplat ...
 - KingbaseES例程之拥有大量索引的表导入数据
			
概述 如何快速插入大量数据比如几千万上亿的带索引的数据表. 数据准备 准备一个拥有二十个索引的数据表. kingbase=# \d+ bigtab Table "kingbase.bigta ...
 - Django 连接数据库 MySQL
			
一.Django 连接 MySQL 修改 settings.py 文件 # 默认用的是sqlite3 # Database # https://docs.djangoproject.com/en/4. ...
 - ProxySQL监控后端节点
			
ProxySQL通过Monitor模块监控后端MySQL Server的read_only值来自动调整节点所属的组.所以,在配置读.写组之前,必须先配置好监控. 首先看下Monitor库中的表: ad ...
 - 第1篇----Istio原理篇
			
Istio是什么 ◎ Istio是一个用于服务治理的开放平台. ◎ Istio是一个Service Mesh形态的用于服务治理的开放平台. ◎ Istio是一个与Kubernetes紧密结合的适用于云 ...
 - 容器监控工具WeaveScope初步安装,了解
			
Weave Scope是Docker和Kubernetes的可视化和监视工具.它提供了自上而下的应用程序视图以及整个基础架构视图,并允许您实时诊断将分布式容器化应用程序部署到云提供商时遇到的任何问题. ...
 - 2_Servlet
			
一. 引言 1.1 C/S架构和B/S架构 C/S 和B/S是软件发展过程中出现的两种软件架构方式 1.2 C/S架构(Client/Server 客户端/服务器) 特点: 必须在客户端安装特定软件 ...
 - echarts 饼图中间添加图片
			
饼图添加图片只需要配置两部分 option = { graphic: { // 这个属性可以在饼图内部填充图片,文字等 elements: [{ type: 'image',//需要填充图片,配置im ...