真·简单题

题目大意

给定 \(n\) 和 \(k\),求出这个柿子的值:

\[\sum_{i=1}^n\sum_{j=1}^n(i+j)^k\mu^2(\gcd(i,j)gcd(i,j)
\]

按照莫反的套路,我们枚举 \(\gcd\):

\[\sum_{d=1}^n d \sum_{i=1}^n\sum_{j=1}^n[\gcd(i,j)=d]\mu^2(d)(i+j)^k
\]
\[\sum_{d=1}^n \mu^2(d)d \sum_{i=1}^{\lfloor \frac n d \rfloor}\sum_{j=1}^{\lfloor \frac n d \rfloor}[\gcd(i,j)=1]d^k(i+j)^k
\]

来一发反演:

\[\sum_{d=1}^n\mu^2(d)d^{k+1}\sum_{i=1}^{\lfloor \frac n d \rfloor}\sum_{j=1}^{\lfloor \frac n d \rfloor}(i+j)^k\sum_{x|i \And x|j}\mu(x)
\]
\[\sum_{d=1}^n\mu^2(d)d^{k+1}\sum_{x=1}^{\lfloor \frac n d \rfloor}\mu(x)\sum_{i=1}^{\lfloor \frac n d \rfloor}\sum_{j=1}^{\lfloor \frac n d \rfloor}x^k(i+j)^k
\]
\[\sum_{d=1}^n \mu^2(d)d^{k+1}\sum_{x=1}^{\lfloor \frac n d \rfloor}\mu(x)x^k\sum_{i=1}^{\lfloor \frac n {dx} \rfloor}\sum_{j=1}^{\lfloor \frac n {dx} \rfloor}(i+j)^k
\]

设 \(f(n) = \sum_{i=1}^n\sum_{j=1}^n(i+j)^k\)

\[\sum_{d=1}^n\mu^2(d)d^{k+1}\sum_{x=1}^{\lfloor \frac n d \rfloor}\mu(x)x^kf(\frac n {dx})
\]

再考虑套路,令 \(T = dx\):

\[\sum_{T=1}^n \sum_{x|T}\mu(x)x^k\mu^2(\frac T x)(\frac T x)^{k+1}f(\frac n T)
\]
\[\sum_{T=1}^nT^kf(\frac n T)\sum_{x|T}\mu(x)\mu^2(\frac T x)id(\frac T x)
\]

后面的部分明显是狄利克雷卷积的形式

\[\sum_{T=1}^nT^kf(\frac n T)((id·\mu^2) * \mu)(T)
\]

然后我们来考虑 \(f\):

\[\sum_{i=1}^n\sum_{j=1}^n(i+j)^k
\]

经过 简单 复杂的推导后,发现它等于:

\[\sum_{i=1}^{2n}\min(i,2n-i) \times i^k
\]

我们再设:

\[S(n)=\sum_{i=1}^n i^k
\]
\[sum(n)=\sum_{i=1}^nS(i)
\]

就会发现:

\[f(n) = sum(2n)-2 \times sum(n)
\]

然后我们来考虑这个毒瘤的积性函数:

\[F=((id · \mu^2) * \mu)
\]

虽然可以 \(O(n\log n)\) 暴力预处理,但是显然会 \(\rm TLE\),由于这是一个积性函数,考虑对其线性筛。

\[F(p) = ((id(p) \times \mu^2(p)) * \mu(1) ) + ((id(1) \times \mu^2(1)) * \mu(p) = p - 1
\]
\[F(p^2) = ((id(p^2) \times \mu^2(p^2)) * \mu(1) ) + ((id(p) \times \mu^2(p)) * \mu(p) + ((id(1) \times \mu^2(1)) * \mu(p^2) = 0 - p + 0 = -p
\]

因为鸽笼原理,\(F(p^e) (3 \leq e )\) 中,要么 \(\mu^2(p^k)\) 是 \(0\)(即 \(id(p^k) \times \mu^2(p^k)\) 是 \(0\)),要么 \(\mu(p^{e-k})\) 是 \(0\),即 \(F(p^e) = 0 (3 \leq e)\)

那么我们就可以线性筛 \(F\) 了。

然后来考虑 \(S\) 和 \(sum\),容易发现 \(S\) 其实就是 \(id^k\) 的前缀和,所以能够线性筛,那么 \(sum\) 也可以在线性时间内预处理。

复杂度:预处理 \(O(n)\),询问 \(O(\sqrt n)\)。

code:

#include<cstdio>
const int M=1e7+5,mod=998244353;
int n,k,top,f[M],sum[M],pri[M],zhi[M];
inline int Add(const int&a,const int&b){
return a+b>=mod?a+b-mod:a+b;
}
inline int pow(int a,int b){
int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod)if(b&1)ans=1ll*a*ans%mod;
return ans;
}
void sieve(){
int i,j,x;
f[1]=sum[1]=zhi[1]=1;
for(i=2;i<=(n<<1);++i){
if(!zhi[i])pri[++top]=i,f[i]=i-1,sum[i]=pow(i,k);
for(j=1;j<=top&&(x=i*pri[j])<=(n<<1);++j){
zhi[x]=1;
sum[x]=1ll*sum[i]*sum[pri[j]]%mod;
if(i%pri[j]){
f[x]=1ll*f[i]*(pri[j]-1)%mod;
}
else{
if(i/pri[j]%pri[j])f[x]=1ll*f[i/pri[j]]*(mod-pri[j])%mod;
break;
}
}
}
for(i=1;i<=(n<<1);++i){
f[i]=Add(f[i-1],1ll*f[i]*sum[i]%mod);
sum[i]=Add(sum[i],sum[i-1]);
}
for(i=1;i<=(n<<1);++i)sum[i]=Add(sum[i-1],sum[i]);
}
inline int S(const int&n){
return (sum[n<<1]-(sum[n]<<1)%mod+mod)%mod;
}
signed main(){
int i,ans=0;
long long tmp;
scanf("%d%lld",&n,&tmp);
k=tmp%(mod-1);
sieve();
for(int L=1,R;L<=n;L=R+1){
R=n/(n/L);
ans=Add(ans,1ll*(f[R]-f[L-1]+mod)%mod*S(n/L)%mod);
}
printf("%d",ans);
}

LGP6156题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. java基础之设计模式之单例模式

    关于单例模式: 单例,即单一实例.因为在一些情况下,某些类的对象,我们只需要一个就可以了,所以我们要用到单例模式. 单例模式的目的是使得一个类中的一个静态对象成为系统中的唯一实例,提供一个访问该实例的 ...

  2. 7.2.*PHP编译安装时常见错误解决办法,php编译常见错误

    configure: error: Cannot find ldap.h   检查下面是不是已经安装,如果没有安装之:检查:yum list openldapyum list openldap-dev ...

  3. Serializable接口中serialVersionUID字段的作用

    序列化运行时使用一个称为 serialVersionUID 的版本号与每个可序列化类相关联,该序列号在反序列化过程中用于验证序列化对象的发送者和接收者是否为该对象加载了与序列化兼容的类. 如果接收者加 ...

  4. 纯JS脚本发送HTTP请求

    1 var xmlHttp; 2 var iii = 0; 3 if (window.XMLHttpRequest) { 4 xmlHttp = new XMLHttpRequest(); 5 if ...

  5. C++输入多行数据

    动机 编程题常用需求,比如输入两行数据. 解决思路:使用getline 程序 #include <iostream> #include <vector> #include &l ...

  6. 用rewrite规则实现将所有到a域名的访问rewrite到b域名

    1.临时重定向 1.1使用redirect实现临时重定向 # cat /apps/nginx/conf/nginx.conf ...省略... server { listen 80; server_n ...

  7. 虫师Selenium2+Python_5、自动化测试模型

    P138--模块化驱动测试实例 P142--参数化搜索关键字 from selenium import webdriver search_text = ['python','中文','text'] # ...

  8. sqli-labs 1-22关

    Page-1(Basic Challenges) Less 1-4 Less-(1-4)是最常规的SQL查询,分别采用单引号闭合.无引号.括号单引号闭合.括号双引号闭合,没有过滤:可以采用and '1 ...

  9. Solution -「HDU 6875」Yajilin

    \(\mathcal{Description}\)   Link.(HDU 裂开了先放个私链 awa.)   在一个 \(n\times n\) 的方格图中,格子 \((i,j)\) 有权值 \(w_ ...

  10. Docker 镜像 层结构理解

    镜像到底是什么.镜像的层结构又是什么 通过docker history命令进行分析,镜像是一种其他镜像+文件+命令的组合. 这些镜像的加载.文件导入创建.命令是存在顺序关系的,所以也引出了层的概念. ...