LGP6156题解
真·简单题
题目大意
给定 \(n\) 和 \(k\),求出这个柿子的值:
\]
按照莫反的套路,我们枚举 \(\gcd\):
\]
\]
来一发反演:
\]
\]
\]
设 \(f(n) = \sum_{i=1}^n\sum_{j=1}^n(i+j)^k\)
\]
再考虑套路,令 \(T = dx\):
\]
\]
后面的部分明显是狄利克雷卷积的形式
\]
然后我们来考虑 \(f\):
\]
经过 简单 复杂的推导后,发现它等于:
\]
我们再设:
\]
\]
就会发现:
\]
然后我们来考虑这个毒瘤的积性函数:
\]
虽然可以 \(O(n\log n)\) 暴力预处理,但是显然会 \(\rm TLE\),由于这是一个积性函数,考虑对其线性筛。
\]
\]
因为鸽笼原理,\(F(p^e) (3 \leq e )\) 中,要么 \(\mu^2(p^k)\) 是 \(0\)(即 \(id(p^k) \times \mu^2(p^k)\) 是 \(0\)),要么 \(\mu(p^{e-k})\) 是 \(0\),即 \(F(p^e) = 0 (3 \leq e)\)
那么我们就可以线性筛 \(F\) 了。
然后来考虑 \(S\) 和 \(sum\),容易发现 \(S\) 其实就是 \(id^k\) 的前缀和,所以能够线性筛,那么 \(sum\) 也可以在线性时间内预处理。
复杂度:预处理 \(O(n)\),询问 \(O(\sqrt n)\)。
code:
#include<cstdio>
const int M=1e7+5,mod=998244353;
int n,k,top,f[M],sum[M],pri[M],zhi[M];
inline int Add(const int&a,const int&b){
return a+b>=mod?a+b-mod:a+b;
}
inline int pow(int a,int b){
int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod)if(b&1)ans=1ll*a*ans%mod;
return ans;
}
void sieve(){
int i,j,x;
f[1]=sum[1]=zhi[1]=1;
for(i=2;i<=(n<<1);++i){
if(!zhi[i])pri[++top]=i,f[i]=i-1,sum[i]=pow(i,k);
for(j=1;j<=top&&(x=i*pri[j])<=(n<<1);++j){
zhi[x]=1;
sum[x]=1ll*sum[i]*sum[pri[j]]%mod;
if(i%pri[j]){
f[x]=1ll*f[i]*(pri[j]-1)%mod;
}
else{
if(i/pri[j]%pri[j])f[x]=1ll*f[i/pri[j]]*(mod-pri[j])%mod;
break;
}
}
}
for(i=1;i<=(n<<1);++i){
f[i]=Add(f[i-1],1ll*f[i]*sum[i]%mod);
sum[i]=Add(sum[i],sum[i-1]);
}
for(i=1;i<=(n<<1);++i)sum[i]=Add(sum[i-1],sum[i]);
}
inline int S(const int&n){
return (sum[n<<1]-(sum[n]<<1)%mod+mod)%mod;
}
signed main(){
int i,ans=0;
long long tmp;
scanf("%d%lld",&n,&tmp);
k=tmp%(mod-1);
sieve();
for(int L=1,R;L<=n;L=R+1){
R=n/(n/L);
ans=Add(ans,1ll*(f[R]-f[L-1]+mod)%mod*S(n/L)%mod);
}
printf("%d",ans);
}
LGP6156题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- MySQL数据类型的最优选择
MySQL数据类型的最优选择 慎重选择数据类型很重要.为啥哩?可以提高性能.原理如下: ● 存储(内存.磁盘).从而节省I/O(检索相同数据情况下) ● 计算.进而 ...
- Netty入门使用教程
原创:转载需注明原创地址 https://www.cnblogs.com/fanerwei222/p/11827026.html 本文介绍Netty的使用, 结合我本人的一些理解和操作来快速的让初学者 ...
- 乐动ld06激光雷达sdk改bug记录分享
前言: 工作中,有使用过乐动ld06款激光雷达,此款雷达将常规雷达的转动的电机部分内置于自己的保护罩内,减少了雷达本身转动积灰等其他外界影响,探测半径是12m,是一款不错的雷达. 不过今天的主要内容不 ...
- 搭建golang开发环境(1.14之后版本)
Go语言1.14版本之后推荐使用go modules管理依赖,也不再需要把代码写在GOPATH目录下. 下载地址 Go官网下载地址:https://golang.org/dl/ Go官方镜像站(推荐) ...
- 深度学习:多层感知机和异或问题(Pytorch实现)
感知机模型 假设输入空间\(\mathcal{X}\subseteq \textbf{R}^n\),输出空间是\(\mathcal{Y}=\{-1,+1\}\).输入\(\textbf{x}\in \ ...
- python内置模块之re模块
内容概要 re模块常用方法 findall search match re模块其他方法 split sub subn compile finditer findall 对无名分组优先展示 re实战之爬 ...
- Solution -「Gym 102956F」Find the XOR
\(\mathcal{Description}\) Link. 给定 \(n\) 个点 \(m\) 条边的连通无向图 \(G\),边有边权.其中 \(u,v\) 的距离 \(d(u,v)\) ...
- Spring高级特性之四:FactoryBean和BeanFactory
FactoryBean和BeanFactory两只是两个单词顺序不同但是内容大不相同.落脚点在后面一个单词,前面一个单词是其功能描述:FactoryBean--工厂bean,一个建工厂的bean?Be ...
- 零基础自学Python十天的时候,写的一款猜数字小游戏,附源码和软件下载链接!
自学一门语言最重要的是要及时给自己反馈,那么经常写一些小程序培养语感很重要,写完可以总结一下程序中运用到了哪些零散的知识点. 本程序中运用到的知识点有: 1.输入输出函数 (input.print) ...
- 利用终端统计 Xcode代码数量命令
直接利用终端命令进入工程文件夹然后写下或复制以下命令 find . -name "*.m" -or -name "*.h" -or -name "*. ...