LGP6156题解
真·简单题
题目大意
给定 \(n\) 和 \(k\),求出这个柿子的值:
\]
按照莫反的套路,我们枚举 \(\gcd\):
\]
\]
来一发反演:
\]
\]
\]
设 \(f(n) = \sum_{i=1}^n\sum_{j=1}^n(i+j)^k\)
\]
再考虑套路,令 \(T = dx\):
\]
\]
后面的部分明显是狄利克雷卷积的形式
\]
然后我们来考虑 \(f\):
\]
经过 简单 复杂的推导后,发现它等于:
\]
我们再设:
\]
\]
就会发现:
\]
然后我们来考虑这个毒瘤的积性函数:
\]
虽然可以 \(O(n\log n)\) 暴力预处理,但是显然会 \(\rm TLE\),由于这是一个积性函数,考虑对其线性筛。
\]
\]
因为鸽笼原理,\(F(p^e) (3 \leq e )\) 中,要么 \(\mu^2(p^k)\) 是 \(0\)(即 \(id(p^k) \times \mu^2(p^k)\) 是 \(0\)),要么 \(\mu(p^{e-k})\) 是 \(0\),即 \(F(p^e) = 0 (3 \leq e)\)
那么我们就可以线性筛 \(F\) 了。
然后来考虑 \(S\) 和 \(sum\),容易发现 \(S\) 其实就是 \(id^k\) 的前缀和,所以能够线性筛,那么 \(sum\) 也可以在线性时间内预处理。
复杂度:预处理 \(O(n)\),询问 \(O(\sqrt n)\)。
code:
#include<cstdio>
const int M=1e7+5,mod=998244353;
int n,k,top,f[M],sum[M],pri[M],zhi[M];
inline int Add(const int&a,const int&b){
return a+b>=mod?a+b-mod:a+b;
}
inline int pow(int a,int b){
int ans=1;
for(;b;b>>=1,a=1ll*a*a%mod)if(b&1)ans=1ll*a*ans%mod;
return ans;
}
void sieve(){
int i,j,x;
f[1]=sum[1]=zhi[1]=1;
for(i=2;i<=(n<<1);++i){
if(!zhi[i])pri[++top]=i,f[i]=i-1,sum[i]=pow(i,k);
for(j=1;j<=top&&(x=i*pri[j])<=(n<<1);++j){
zhi[x]=1;
sum[x]=1ll*sum[i]*sum[pri[j]]%mod;
if(i%pri[j]){
f[x]=1ll*f[i]*(pri[j]-1)%mod;
}
else{
if(i/pri[j]%pri[j])f[x]=1ll*f[i/pri[j]]*(mod-pri[j])%mod;
break;
}
}
}
for(i=1;i<=(n<<1);++i){
f[i]=Add(f[i-1],1ll*f[i]*sum[i]%mod);
sum[i]=Add(sum[i],sum[i-1]);
}
for(i=1;i<=(n<<1);++i)sum[i]=Add(sum[i-1],sum[i]);
}
inline int S(const int&n){
return (sum[n<<1]-(sum[n]<<1)%mod+mod)%mod;
}
signed main(){
int i,ans=0;
long long tmp;
scanf("%d%lld",&n,&tmp);
k=tmp%(mod-1);
sieve();
for(int L=1,R;L<=n;L=R+1){
R=n/(n/L);
ans=Add(ans,1ll*(f[R]-f[L-1]+mod)%mod*S(n/L)%mod);
}
printf("%d",ans);
}
LGP6156题解的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- Category基本概念
1.什么是Category Category有很多种翻译: 分类 \ 类别 \ 类目 (一般叫分类) Category是OC特有的语法, 其他语言没有的语法 Category的作用 可以在不修改原来类 ...
- 反射(reflection),通过反射创建对象
简单尝试: import java.lang.reflect.InvocationTargetException; import java.lang.reflect.Method; public cl ...
- python的namespace的理解
Python命名空间的本质 python中的名称空间是名称(标识符)到对象的映射. 具体来说,python为模块.函数.类.对象保存一个字典(__dict__),里面就是重名称到对象的映射. -- ...
- Pytest介绍
Pytest介绍 pytest是python的一种单元测试框架,与python自带的unittest测试框架类似,但是比unittest框架使用起来更简洁,效率更高.根据pytest的官方网站介绍,它 ...
- VScode git无法使用,Error: command 'git.push' not found 源代码管理无法使用的问题及解决方法
正常条件下,只要电脑中安装了Git,VScode就可以直接使用. 在开始界面有下图所示的功能: 在源代码管理栏目中: 如果没能正常工作,就看不到这些功能. 可能在用某些与git相关的功能时,如安装了G ...
- Solution -「CF 1392H」ZS Shuffles Cards
\(\mathcal{Description}\) Link. 打乱的 \(n\) 张编号 \(1\sim n\) 的数字排和 \(m\) 张鬼牌.随机抽牌,若抽到数字,将数字加入集合 \(S ...
- Vue2.0源码学习(1) - 数据和模板的渲染(上)
准备 一.首先去GitHub上把vue源码download下来,传送门:https://github.com/vuejs/vue 二.搭建一个vue-cli跑起来,用于代码调试,不看着代码动起来只看源 ...
- 上架打包错误:error itms-90086
这是一个很纠结的错误 大家第一反应肯定是 赶紧去看看 位数是否设置 然后发现没有问题 就开始懵逼了 (比如我) 然而无意看到了一个人写的简书 这个人在 Overflow 找到了一个答案 比如你选择 ...
- Java基础问题
基础问题 谈谈你对面向对象的理解 -- 结合场景 为何要使用对象编程? 可重复利用,方便拓展 面向对象有三大特征:封装.继承和多态 封装:为什么要封装?可以使类的成员(数据和行为)有选择性的暴露,这里 ...
- jmeter重点(详细)
之前,写过一篇文章:jmeter,学这些重点就可以了,今天就来把一些重点细节点说一下. 测试计划 可以理解为各种测试元件的容器 其中: 定义整个测试中使用的重复值(全局变量),一般定义服务器的ip.端 ...