引用化学老师的一句话:什么矩阵,没有矩阵!

这种板子题怎么能用矩阵呢。

\(O(k^2\log n)\) 能搞定何必需要 \(O(k^3\log n)\) 呢。

首先设 \(F_n(x)=x^n \bmod {1-P(x)}\),那么我们需要求 \(\sum_{i=1}^n F_i(x) \bmod (1-P(x))\)。然后卷上 \(B(x)\) 就可以得到需要的东西了。

注意到这是等比数列求和,可以使用分治计算等比数列,可以保证复杂度是 \(O(k^2\log n)\) 而不是 \(O(k^2\log^2n)\) 的。

主要到我们在求的实际上是 \(\sum_{i=1}^n (F_i(x) \bmod {P(x)})\),但是因为这些东西加起来再取模和取模之后再加起来的结果是一样的,所以并无区别。

坑还是比较多的,需要注意一下。

#include<cstdio>
typedef unsigned ui;
typedef __uint128_t L;
typedef unsigned long long ull;
const ui M=55;
ui len,P,b[M],p[M];ull n,m;
struct Barrett{
ull b,m;
Barrett(const ull&m=1):m(m),b((L(1)<<64)/m){}
friend inline ull operator%(const ull&a,const Barrett&mod){
ull r=a-mod.m*(L(mod.b)*a>>64);return r>=mod.m?r-mod.m:r;
}
}mod;
inline void add(ui*f,ui*g,const ui&len){
ui i;for(i=0;i^len;++i)f[i]=(f[i]+g[i])%mod;
}
inline void times(ui*f,ui*g,ui*P,const ui&len){
ui i,j,t,x;static ui sav[M];
for(i=0;i^len;++i)if(f[i])for(j=0;j^len;++j)if(g[j])sav[i+j]=(sav[i+j]+1ull*f[i]*g[j])%mod;
for(i=(len<<1)-1;i>=len;--i)if(sav[i])for(t=sav[i],j=len;j<=len;--j)sav[i-j]=(sav[i-j]+1ull*t*P[j])%mod;
for(i=0;i^len;++i)f[i]=sav[i],sav[i]=0;
}
inline ui Solve(ui*b,ui*P,const ui&len,ull n){
if(n>>63)return 0;ui i,ans(0);static ui f[M],g[M],sav[M];sav[0]=g[0]=1;if(len^1)f[1]=1;else f[0]=p[1];
for(;n;n>>=1,++f[0],times(g,f,P,len),--f[0],times(f,f,P,len))if(n&1)times(sav,f,P,len),add(sav,g,len);
for(i=0;i^len;++i)ans=(ans+1ull*sav[i]*b[i+1])%mod,f[i]=g[i]=sav[i]=0;return ans;
}
signed main(){
ui i;scanf("%u",&len);for(i=1;i<=len;++i)scanf("%u",b+i);for(i=1;i<=len;++i)scanf("%u",p+i);
scanf("%llu%llu%u",&n,&m,&P);mod=Barrett(P);p[0]=P-1;for(i=1;i<=len;++i)b[i]=b[i]%mod,p[i]=p[i]%mod;
printf("%u",(Solve(b,p,len,m-1)+P-Solve(b,p,len,n-2))%mod);
}

upd:这道题可以使用新算法。

我们观察得到,答案为 \([x^n]\frac {B(x)(1-C(x))} {(1-C(x))(1-x)}\)。

然后跑一遍老算法,但是需要求逆。

然而注意到分母的零次项一定为 \(1\),所以实际上并不需要求逆。

常数比老算法小一点儿,仍然不清楚最优解是什么。。。

#include<cstdio>
typedef unsigned ui;
typedef __uint128_t L;
typedef unsigned long long ull;
const ui M=55;
ui len,P,f[M],g[M],b[M],p[M];ull n,m;
struct Barrett{
ull b,m;
Barrett(const ui&m=1):m(m),b((L(1)<<64)/m){}
friend inline ull operator%(const ull&a,const Barrett&mod){
ull r=a-mod.m*(L(mod.b)*a>>64);return r>=mod.m?r-mod.m:r;
}
}mod;
inline void times(ui*f,ui*g,const ui&len){
ui i,j,t;static ui sav[M];
for(i=0;i^len;++i)if(f[i])for(j=0;j^len;++j)if(g[j])sav[i+j]=(sav[i+j]+1ull*f[i]*g[j])%mod;
for(i=0;i<len*2;++i)f[i]=sav[i],sav[i]=0;
}
inline ui Solve(ui*f,ui*g,const ui&len,ull n){
ui i;static ui sav[M];
for(;n;n>>=1){
for(i=0;i<len;++i)sav[i]=i&1?P-g[i]:g[i];times(f,sav,len);times(g,sav,len);
for(i=n&1;i<len*2;i+=2)f[i>>1]=f[i];for(i=0;i<len*2;i+=2)g[i>>1]=g[i];for(i=len;i<len*2;++i)f[i]=g[i]=0;
}
return f[0];
}
signed main(){
ui i,x,y;scanf("%u",&len);++len;for(i=1;i^len;++i)scanf("%u",b+i);for(i=1;i^len;++i)scanf("%u",p+i);
scanf("%llu%llu%u",&n,&m,&P);mod=Barrett(P);p[0]=1;for(i=1;i^len;++i)b[i]=b[i]%mod,p[i]=P-p[i]%mod;
times(b,p,len);b[len++]=0;for(i=len-1;i;--i)p[i]=(p[i]+P-p[i-1])%mod;
for(i=0;i^len;++i)f[i]=b[i],g[i]=p[i];x=Solve(f,g,len,n-1);
for(i=0;i^len;++i)f[i]=b[i],g[i]=p[i];y=Solve(f,g,len,m);
printf("%u",(P+y-x)%mod);
}

LGP2461题解的更多相关文章

  1. 2016 华南师大ACM校赛 SCNUCPC 非官方题解

    我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...

  2. noip2016十连测题解

    以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...

  3. BZOJ-2561-最小生成树 题解(最小割)

    2561: 最小生成树(题解) Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1628  Solved: 786 传送门:http://www.lyd ...

  4. Codeforces Round #353 (Div. 2) ABCDE 题解 python

    Problems     # Name     A Infinite Sequence standard input/output 1 s, 256 MB    x3509 B Restoring P ...

  5. 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解

    题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...

  6. 2016ACM青岛区域赛题解

    A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Jav ...

  7. poj1399 hoj1037 Direct Visibility 题解 (宽搜)

    http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...

  8. 网络流n题 题解

    学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...

  9. CF100965C题解..

    求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...

随机推荐

  1. Python属性描述符

    实现了__get__.set.__delete__中任意一个方法的类,称之为属性描述符. 属性描述符可以控制属性操作时的一些行为. 只要具有__get__方法的类就是描述符类. 如果一个类中具有__g ...

  2. 了解Spark

    Apache Spark是一个开源的集群计算框架,主要用来处理实时生成的数据. Spark是建立在Hadoop的MapReduce顶部.它被优化到了内存中运行,而MapReduce等替代方法是将数据写 ...

  3. linux_3

    1.统计出/etc/passwd文件中其默认shell为非/sbin/nologin的用户个数,并将用户都显示出来 [root@lhq ~]#echo "total:`cat /etc/pa ...

  4. 教你用Elastic Search:运行第一条Hello World搜索命令

    摘要:Elastic Search可实时对数据库进行全文检索.处理同义词.从同样的数据中生成分析和聚合数据. 本文分享自华为云社区<Elastic Search入门(一): 简介,安装,运行第一 ...

  5. opencv笔记--Active contours

    Active Contours 也称作 Snake,通过定义封闭区域曲线的能量函数,并使其最小化得到最终曲线. Active Contours 被用作物体边界精确定位上,opencv 给出了一个实现, ...

  6. netty系列之:可以自动通知执行结果的Future,有见过吗?

    目录 简介 JDK异步缘起 netty中的Executor Future的困境和netty的实现 总结 简介 在我的心中,JDK有两个经典版本,第一个就是现在大部分公司都在使用的JDK8,这个版本引入 ...

  7. Python基础—迭代器、生成器(Day13)

    一.迭代器 1.可迭代对象:遵循可迭代协议,内部含有__iter__方法的对象就叫做可迭代对象.(str.list.tulpe.dict.set) 查询数据类型的方法 s = 'laonanhai' ...

  8. TensorFlow优化器浅析

    本文基于tensorflow-v1.15分支,简单分析下TensorFlow中的优化器. optimizer = tf.train.GradientDescentOptimizer(learning_ ...

  9. FreeHttp2.3升级说明

    一.升级方法 下载新版本插件 https://files.cnblogs.com/files/lulianqi/FreeHttp2.3.0zip  或 http://lulianqi.com/file ...

  10. 利用AWVS扫描Web漏洞

    实验目的 利用AWVS扫描Web漏洞. 实验原理 AWVS是一款知名的网络漏洞扫描工具,它通过网络爬虫测试你的网站安全,检测流行安全漏洞. 实验内容 AWVS是一个自动化的web应用程序安全测试工具, ...