题目描述

pks 得到了一棵 \(N\) 个节点,权值为 \(1\sim N\) 的 \(AVL\) 树,他觉得这棵树太大了,于是他想要删掉一些节点使得最后剩下的树恰好有 \(K\) 个节点。如果 pks 删掉了一个节点,那么以这个节点为根的整棵子树都会被删掉。最后剩下的树必须依旧是一棵 \(AVL\) 树。

pks 希望,留下的 \(K\) 个节点的中序遍历的字典序最小。他希望你能帮他找到这个方案,作为报答,他将会把自己的财富分一半给你。

第一行两个整数 \(N,K\),表示节点数量和要保留的节点数量。

接下来 \(N\) 行,每行一个数字 \(p_i\),表示权值为 \(i\) 的节点的父亲的权值,如果是 \(-1\) ,表示这个点是根节点。

一行,\(N\) 个字符,如果权值为 \(i\) 的节点留下来,则第 \(i\) 个字符为 \(1\),否则为 \(0\) 。

\(N \leq 5 \times 10 ^ 5\)

思路分析

考场只会写暴力

既然要求字典序最小的答案,一种很容易想到的贪心是枚举 \(1 \sim N\) 的节点,如果可以选择就把它加入最后的 \(AVL\) 树中去。但是我们应该如何判断呢?

这里给出一种思路,我们先假设当前节点已经选入 \(AVL\) 树中,再来求出如果它真的被我们选中的话一共至少要选多少个节点(\(AVL\) 树的高度差绝对值不超过一)。

我们可以用 \(dp\) 来解决这个问题。定义 \(f_{i,j}\) 表示以 \(i\) 为根节点,\(AVL\) 树的高度为 \(j\) 最少要选的个数。注意:\(j\) 的大小不应该大于 \(i\) 为根子树的高度大小

我们再从 \(AVL\) 树的定义出发,分别转移 :

  • 左子树,右子树高度相等
  • \(左子树高度 - 右子树高度 = 1\)
  • \(右子树高度 - 左子树高度 = 1\)

这三种情况。

我们每次判断时都要从当前节点向上跳直到根节点,并且一路标号。

因为如果一个节点选择了,那么它的爸爸,爷爷,曾爷爷 ……一定必选。

每当我们路过一个节点时,我们都要临时更新当前节点的 \(f_{now,j}\) 数组。当选择失败时再还原即可。

#include <bits/stdc++.h>

#define file(a) freopen(a".in", "r", stdin), freopen(a".out", "w", stdout)

#define Enter putchar('\n')
#define quad putchar(' ') namespace IO {
template <class T> inline void read(T &a);
template <class T, class ...rest> inline void read(T &a, rest &...x);
template <class T> inline void write(T x);
template <class T, class ...rest> inline void write(T x, rest ...a);
} #define N 500005
#define int long long int n, k, root, fa[N], rc[N], lc[N];
int f[N][30], dep[N], g[N][30], flag[N]; inline void update(int now) {
for (int i = 2; i <= dep[now]; i++) {
int min1, min2;
min1 = f[lc[now]][i - 1] + std::min(f[rc[now]][i - 1], f[rc[now]][i - 2]) + 1;
min2 = f[lc[now]][i - 2] + f[rc[now]][i - 1] + 1;
f[now][i] = std::min(min1, min2);
}
f[now][1] = f[now][0] = 0x3f3f3f3f;
} inline void dfs(int now) {
if (now == 0) return ;
dfs(lc[now]); dfs(rc[now]);
dep[now] = std::max(dep[lc[now]], dep[rc[now]]) + 1;
update(now);
f[now][0] = 0, f[now][1] = 1;
} inline bool check(int now) {
if (flag[now]) return true;
flag[now] ++;
for (int i = 0; i <= dep[now]; i++) g[now][i] = f[now][i];
f[now][0] = 0x3f3f3f3f;
while (now != root) {
now = fa[now];
for (int i = 0; i <= dep[now]; i++) g[now][i] = f[now][i];
update(now); flag[now] ++;
}
int minn = 0x3f3f3f3f;
for (int i = 1; i <= dep[root]; i++)
minn = std::min(minn, f[root][i]);
return minn <= k;
} inline void CtrlZ(int now) {
flag[now] --;
for (int i = 0; i <= dep[now]; i++) f[now][i] = g[now][i];
while (now != root) {
now = fa[now];
for (int i = 0; i <= dep[now]; i++) f[now][i] = g[now][i];
flag[now] --;
}
} signed main(void) {
// file("5071");
IO::read(n, k);
for (int i = 1, father; i <= n; i++) {
IO::read(father);
if (father == -1) root = i;
fa[i] = father;
if (lc[father] == 0) lc[father] = i;
else rc[father] = i;
}
memset(f, 0x3f, sizeof(f));
for (int i = 0; i <= n; i++) f[i][0] = 0;
dfs(root);
for (int i = 1; i <= n; i++) {
if (check(i)) printf("1");
else printf("0"), CtrlZ(i);
}
} namespace IO {
template <class T> inline void read(T &a) {
T s = 0, t = 1;
char c = getchar();
while ((c < '0' || c > '9') && c != '-')
c = getchar();
if (c == '-')
c = getchar(), t = -1;
while (c >= '0' && c <= '9')
s = (s << 1) + (s << 3) + (c ^ 48), c = getchar();
a = s * t;
}
template <class T, class ...rest> inline void read(T &a, rest &...x) {
read(a); read(x...);
} template <class T> inline void write(T x) {
if (x == 0) putchar('0');
if (x < 0) putchar('-'), x = -x;
int top = 0, sta[50] = {0};
while (x)
sta[++top] = x % 10, x /= 10;
while (top)
putchar(sta[top] + '0'), top --;
return ;
}
template <class T, class ...rest> inline void write(T x, rest ...a) {
write(x); quad; write(a...);
}
}

2022省选前联考 AVL树/平衡树的更多相关文章

  1. luoguP6623 [省选联考 2020 A 卷] 树(trie树)

    luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...

  2. luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)

    luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...

  3. luoguP6619 [省选联考 2020 A/B 卷]冰火战士(线段树,二分)

    luoguP6619 [省选联考 2020 A/B 卷]冰火战士(线段树,二分) Luogu 题外话1: LN四个人切D1T2却只有三个人切D1T1 很神必 我是傻逼. 题外话2: 1e6的数据直接i ...

  4. [十二省联考2019]异或粽子——可持久化trie树+堆

    题目链接: [十二省联考2019]异或粽子 求前$k$大异或区间,可以发现$k$比较小,我们考虑找出每个区间. 为了快速得到一个区间的异或和,将原序列做前缀异或和. 对于每个点作为右端点时,我们维护出 ...

  5. [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树

    [BZOJ 5252][LOJ 2478][九省联考2018] 林克卡特树 题意 给定一个 \(n\) 个点边带权的无根树, 要求切断其中恰好 \(k\) 条边再连 \(k\) 条边权为 \(0\) ...

  6. LuoguP4383 [八省联考2018]林克卡特树lct

    LuoguP4383 [八省联考2018]林克卡特树lct https://www.luogu.org/problemnew/show/P4383 分析: 题意等价于选择\(K\)条点不相交的链,使得 ...

  7. 题解 P6622 [省选联考 2020 A/B 卷] 信号传递

    洛谷 P6622 [省选联考 2020 A/B 卷] 信号传递 题解 某次模拟赛的T2,考场上懒得想正解 (其实是不会QAQ), 打了个暴力就骗了\(30pts\) 就火速溜了,参考了一下某位强者的题 ...

  8. luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)

    luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp) Luogu 题外话: 我可能是傻逼, 但不管我是不是傻逼, 我永远单挑出题人. 题解时间 看数据范围可以确定状压dp. ...

  9. luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分)

    luoguP4383 [八省联考2018]林克卡特树(树上dp,wqs二分) Luogu 题解时间 $ k $ 条边权为 $ 0 $ 的边. 是的,边权为零. 转化成选正好 $ k+1 $ 条链. $ ...

随机推荐

  1. Java创建boolean型数组

    Java如何声明并初始化一个boolean型的数组? public class Main{ static boolean[] arr1 = new boolean[20]; public static ...

  2. SpringBoot 三层架构 Controller、Service、Dao作用和关系详解

    首先创建一个springboot项目. model层 model层也叫pojo层或者entity层,个人比较喜欢pojo层. 一般数据库的一张表对应一个pojo层,并且表中所有字段都在pojo层都一一 ...

  3. C# iText 7 切分PDF,处理PDF页面大小

    一.itext 我要使用itext做一个pdf的页面大小一致性处理,然后再根据数据切分出需要的pdf. iText的官网有关于它的介绍,https://itextpdf.com/ 然后在官网可以查找a ...

  4. Bugku CTF练习题---社工---信息查找

    Bugku CTF练习题---社工---信息查找 flag:KEY{462713425} 解题步骤: 1.观察题目,思考题目内容,了解答案是群号 2.这里涉及到好多的信息,首先有网址,第二个是今日头条 ...

  5. vuepress搭建UI组件库文档踩坑篇

    为了实现组件效果预览及代码展示可折叠功能,使用了插件vuepress-plugin-demo-container 相关配置可参考官网说明文档 第一步 安装插件 npm i - D vuepress-p ...

  6. MySQL存储过程入门了解

    0.环境说明: mysql版本:5.7 1.使用说明 ​ 存储过程是数据库的一个重要的对象,可以封装SQL语句集,可以用来完成一些较复杂的业务逻辑,并且可以入参出参(类似于java中的方法的书写). ...

  7. Redis设计与实现2.1:数据库和事件

    数据库和事件 这是<Redis设计与实现>系列的文章,系列导航:Redis设计与实现笔记 数据库 数据库的结构定义在 redis.h/redisServer 这个结构体中,这个结构体有许多 ...

  8. 【工具-Nginx】从入门安装到高可用集群搭建

    文章已收录至https://lichong.work,转载请注明原文链接. ps:欢迎关注公众号"Fun肆编程"或添加我的私人微信交流经验 一.Nginx安装配置及常用命令 1.环 ...

  9. arts-week13

    Algorithm 992. Sort Array By Parity II - LeetCode Review https://tls.ulfheim.net/ HTTP协议图解 Tip linux ...

  10. String 为什么不可变?

    转载来源:String为什么不可变 今天来分享一道群友去阿里云面试遇到的 Java 基础面试真题:"String.StringBuffer.StringBuilder 的区别?String ...