PageRank原理分析
pagerank是将众多网页看成一个有向图,每个页面就是有向图中的节点。计算每个节点的出度和入度。如果一个网站被大量其他的网页引用,那么他就会有更高的pr分数。
原理
对于所有与节点i相连的节点,用他们的pr值除以他们的出度(一个节点可以给多个节点投票,但是投票的权重会被平摊)

计算转移矩阵。第一列表示A的所有出度 (A->A, A->B, A->C, A->D) ,第一行表示A的所有入度 (A->A, B->A, C->A, D->A) 。
0 & 0 & \frac{1}{2} & 1 \\
\frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0
\end{array}\right]
\]
用矩阵计算来更新pr值:
\]
\]
0 & 0 & \frac{1}{2} & 1 \\
\frac{1}{2} & 0 & 0 & 0 \\
\frac{1}{2} & 1 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 0
\end{array}\right] \cdot\left[\begin{array}{c}
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4} \\
\frac{1}{4}
\end{array}\right]=\left[\begin{array}{c}
\frac{3}{8} \\
\frac{1}{8} \\
\frac{3}{8} \\
\frac{1}{4}
\end{array}\right]
\]
\(P\)是它们的pr得分, \(L\)是节点的出度。计算下一层pr的方法就是,把相连的节点的pr都拿过来,但是要同时除以他们的出度。pr的默认值就是\(\frac{1}{n}\)
\(0 * \frac{1}{4} + 0 * \frac{1}{4} + \frac{1}{2} * \frac{1}{4} + 1 * \frac{1}{4} = \frac{3}{8}\)
DeadEnds
当一个节点只有入度没有出度,那么他就是DeadEnds。这个节点会导致整个网页的pagerank值趋于0。

他的转移矩阵M如下,由于他的某一列全为0,导致所有结果都会变成0
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 1 & 0 \\
\end{array}\right]
\]
可以看到两轮后就为0了
for i in range(3):
item = a.dot(item)
print(item)
# [0. 0. 0.66666667]
# [0. 0. 0.]
# [0. 0. 0.]
修正的方法就是在全为0的那一列加上一个平均值。他的含义就是如果一个页面不链接到任何其他网页,他们他就有可能转换到任何页面。
\]
- M 是转移矩阵
- a 是
n * n的向量,如果第i个节点的出度为0,那么a的第i列就全为1,否则就全为0. - e 是全1的
n * 1的向量 - 点乘操作(而不是矩阵运算)
其实就是在对应一列加上一个平均值
0 & 0 & \frac{1}{3} \\
0 & 0 & \frac{1}{3} \\
1 & 1 & \frac{1}{3} \\
\end{array}\right]
\]
SpiderTraps
一个节点只有指向自己的链接,这种节点的权重在迭代的过程中会变成1,而其他的节点会趋于0.

这种节点的转移矩阵如下:
1 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & \frac{1}{2} \\
0 & \frac{1}{2} & 0 \\
\end{array}\right]
\]
由于这个节点的对角线元素是1,所以他的pagerank值会不断增加。他的解决方法就是引入一个概率\(\beta\),用户会有\(\beta\)的概率停留在这个节点,有\(1-\beta\)的概率跳转到其他任何网页。
\]
- \(\beta\)是用户留在网页的概率
- e是全一的
n * 1向量,\(ee^T\)就是全一的n * n矩阵
这样的话,完整的公式如下所示:
\]
networkx实现
import networkx as nx
import matplotlib.pyplot as plt
import random
graph = nx.DiGraph()
graph.add_nodes_from(range(0, 100))
for i in range(200):
m = random.randint(0, 100)
n = random.randint(0, 100)
graph.add_edge(m,n)
nx.draw(graph, with_labels=True)
plt.show()
pr = nx.pagerank(graph, max_iter=100, alpha=0.01)
print(pr)

PageRank原理分析的更多相关文章
- Handler系列之原理分析
上一节我们讲解了Handler的基本使用方法,也是平时大家用到的最多的使用方式.那么本节让我们来学习一下Handler的工作原理吧!!! 我们知道Android中我们只能在ui线程(主线程)更新ui信 ...
- Java NIO使用及原理分析(1-4)(转)
转载的原文章也找不到!从以下博客中找到http://blog.csdn.net/wuxianglong/article/details/6604817 转载自:李会军•宁静致远 最近由于工作关系要做一 ...
- 原子类java.util.concurrent.atomic.*原理分析
原子类java.util.concurrent.atomic.*原理分析 在并发编程下,原子操作类的应用可以说是无处不在的.为解决线程安全的读写提供了很大的便利. 原子类保证原子的两个关键的点就是:可 ...
- Android中Input型输入设备驱动原理分析(一)
转自:http://blog.csdn.net/eilianlau/article/details/6969361 话说Android中Event输入设备驱动原理分析还不如说Linux输入子系统呢,反 ...
- 转载:AbstractQueuedSynchronizer的介绍和原理分析
简介 提供了一个基于FIFO队列,可以用于构建锁或者其他相关同步装置的基础框架.该同步器(以下简称同步器)利用了一个int来表示状态,期望它能够成为实现大部分同步需求的基础.使用的方法是继承,子类通过 ...
- Camel运行原理分析
Camel运行原理分析 以一个简单的例子说明一下camel的运行原理,例子本身很简单,目的就是将一个目录下的文件搬运到另一个文件夹,处理器只是将文件(限于文本文件)的内容打印到控制台,首先代码如下: ...
- NOR Flash擦写和原理分析
NOR Flash擦写和原理分析 1. NOR FLASH 的简单介绍 NOR FLASH 是很常见的一种存储芯片,数据掉电不会丢失.NOR FLASH支持Execute On Chip,即程序可以直 ...
- 使用AsyncTask异步更新UI界面及原理分析
概述: AsyncTask是在Android SDK 1.5之后推出的一个方便编写后台线程与UI线程交互的辅助类.AsyncTask的内部实现是一个线程池,所有提交的异步任务都会在这个线程池中的工作线 ...
- (转)Android 系统 root 破解原理分析
现在Android系统的root破解基本上成为大家的必备技能!网上也有很多中一键破解的软件,使root破解越来越容易.但是你思考过root破解的 原理吗?root破解的本质是什么呢?难道是利用了Lin ...
随机推荐
- Spring 08: AOP面向切面编程 + 手写AOP框架
核心解读 AOP:Aspect Oriented Programming,面向切面编程 核心1:将公共的,通用的,重复的代码单独开发,在需要时反织回去 核心2:面向接口编程,即设置接口类型的变量,传入 ...
- ARC125E - Snack (网络流)
题面 有 N N N 种糖果, M M M 个小孩子,第 i i i 种糖果有 A i A_i Ai 个,第 i i i 个孩子不能有超过 B i B_i Bi 个同种类型的糖果,第 i i i ...
- 1.5_HTML基础标签实战演练
基本的 HTML 标签 HTML 标题 HTML 标题(Heading)是通过 <h1> - <h6> 等标签进行定义的. <h1>This is a headin ...
- SpringMvc请求流程源码解析
目录 SpringMvc请求流程图 请求流程粗讲解 方法细讲 doDispatcher --> 核心 找到Handler#getHandler getHandler(request) mappi ...
- 使用VS Code 搭建 platformio 平台
一.需要的资源网站 arduino GitHub:https://github.com/arduino espressif GitHub:https://github.com/espressif pl ...
- Vmware虚拟主机启动卡死问题解决
记录一次虚拟主机开机卡死,黑屏,无法操作的问题 一.问题现象 1.在vmware上新建数台主机后,第一次启动都正常,部分主机出现关机后再开机(或直接重启)卡死的情况: 2.在vmware上右键菜单栏均 ...
- 【读书笔记】C#高级编程 第十三章 异步编程
(一)异步编程的重要性 使用异步编程,方法调用是在后台运行(通常在线程或任务的帮助下),并不会阻塞调用线程.有3中不同的异步编程模式:异步模式.基于事件的异步模式和新增加的基于任务的异步模式(TAP, ...
- 记一次Linux光盘救援
最近遇到一个zz把/etc/profile改坏了导致系统起不来,所以复习一下光盘救援 工具:vm-workstation,centos6 原系统盘起不来后,插入有救援工具的系统盘后 按照提示进入she ...
- torch.max与torch.argmax
形式: torch.max(input) → Tensor 返回输入tensor中所有元素的最大值: a = torch.randn(1, 3) >>0.4729 -0.2266 -0.2 ...
- 学习完nio的一个小笔记吧
这是一个nio网络通信服务端的demo,主要就学习了selector的一些用法,以及它里面的事件类型 selector是对nio的一个优化,它能保证既能高效处理线程中的事件,又能保证线程不会一直占用c ...