GC日志

-Xmx1024m -Xms1024m -XX:+PrintGCDetails

Heap

PSYoungGen total 305664K, used 26214K [0x00000000eab00000, 0x0000000100000000, 0x0000000100000000)

eden space 262144K, 10% used [0x00000000eab00000,0x00000000ec499be8,0x00000000fab00000)

from space 43520K, 0% used [0x00000000fd580000,0x00000000fd580000,0x0000000100000000)

to space 43520K, 0% used [0x00000000fab00000,0x00000000fab00000,0x00000000fd580000)

ParOldGen total 699392K, used 0K [0x00000000c0000000, 0x00000000eab00000, 0x00000000eab00000)

object space 699392K, 0% used [0x00000000c0000000,0x00000000c0000000,0x00000000eab00000)

Metaspace used 3224K, capacity 4496K, committed 4864K, reserved 1056768K

class space used 351K, capacity 388K, committed 512K, reserved 1048576K

下面再编写一个代码,观察GC的触发操作

public class Demo {
public static void main(String[] args){
Random random = new Random();
String val = "test";
while (true){
val+=val+random.nextInt(999999999)+random.nextInt(999999999);
}
}
}

[GC (Allocation Failure) [PSYoungGen: 2031K->488K(2560K)] 2031K->676K(9728K), 0.0013870 secs] [Times: user=0.06 sys=0.00, real=0.00 secs]

[GC (Allocation Failure) [PSYoungGen: 2441K->504K(2560K)] 2629K->1254K(9728K), 0.0010120 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[GC (Allocation Failure) [PSYoungGen: 1950K->488K(2560K)] 2700K->1951K(9728K), 0.0011297 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[GC (Allocation Failure) [PSYoungGen: 1940K->488K(2560K)] 4796K->4049K(9728K), 0.0012419 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[GC (Allocation Failure) [PSYoungGen: 1257K->488K(2560K)] 6212K->5443K(9728K), 0.0009412 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[GC (Allocation Failure) [PSYoungGen: 488K->496K(1536K)] 5443K->5491K(8704K), 0.0005513 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[Full GC (Allocation Failure) [PSYoungGen: 496K->0K(1536K)] [ParOldGen: 4995K->2727K(7168K)] 5491K->2727K(8704K), [Metaspace: 3281K->3281K(1056768K)], 0.0066911 secs] [Times: user=0.09 sys=0.00, real=0.01 secs]

[GC (Allocation Failure) [PSYoungGen: 30K->32K(2048K)] 6938K->6940K(9216K), 0.0004666 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[Full GC (Ergonomics) [PSYoungGen: 32K->0K(2048K)] [ParOldGen: 6908K->2030K(7168K)] 6940K->2030K(9216K), [Metaspace: 3281K->3281K(1056768K)], 0.0082892 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

[GC (Allocation Failure) [PSYoungGen: 19K->0K(2048K)] 6231K->6211K(9216K), 0.0003457 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[Full GC (Ergonomics) [PSYoungGen: 0K->0K(2048K)] [ParOldGen: 6211K->4817K(7168K)] 6211K->4817K(9216K), [Metaspace: 3281K->3281K(1056768K)], 0.0027242 secs] [Times: user=0.08 sys=0.00, real=0.00 secs]

[GC (Allocation Failure) [PSYoungGen: 0K->0K(2048K)] 4817K->4817K(9216K), 0.0003852 secs] [Times: user=0.00 sys=0.00, real=0.00 secs]

[Full GC (Allocation Failure) [PSYoungGen: 0K->0K(2048K)] [ParOldGen: 4817K->4798K(7168K)] 4817K->4798K(9216K), [Metaspace: 3281K->3281K(1056768K)], 0.0095410 secs] [Times: user=0.00 sys=0.00, real=0.01 secs]

Exception in thread "main" java.lang.OutOfMemoryError: Java heap space

GC日志分析

JVM垃圾回收

垃圾对象判定标准

jvm的GC工作主要针对的对象是堆内存,在做GC工作之前,首先要判定堆内存中的对象实例是否为垃圾,通常使用以下两种算法来定义

1.引用计数算法

java在运行时,当有一个地方引用该对象实例,会将这个对象实例加1,引用失效时就减1,jvm在扫描内存时,发现引用计数值为0的则是垃圾对象,计数值大于0的则为活跃对象。

目前垃圾回收算法,没有采用引用计数算法,原因是在对象互相引用的情况下,无法判定两者是否为垃圾对象。

2. 根搜索算法

根搜索算法是以“GC ROOTS”为起始点往下搜索,所有经过的对象合并起来称为引用链,在这引用链里,没有的对象称为垃圾对象,在引用链里的是活跃对象。那什么样的对象才能称为“GC ROOTS”呢?以下四种可以

  • 虚拟机栈(栈帧中的本地变量表)中引用的对象。
  • 方法区中的类静态属性引用的对象。
  • 方法区中的常量引用的对象。
  • 本地方法栈中 JNI(Native 方法)的引用对象。

垃圾回收算法

1. 标记-清除(Mark-Sweep)

jvm会扫描所有的对象实例,通过根搜索算法,将活跃对象进行标记,jvm再一次扫描所有对象,将未标记的对象进行清除,只有清除动作,不作任何的处理,这样导致的结果会存在很多的内存碎片。

2. 复制(copying)

jvm扫描所有对象,通过根搜索算法标记被引用的对象,之后会申请新的内存空间,将标记的对象复制到新的内存空间里,存活的对象复制完,会清空原来的内存空间,将新的内存最为jvm的对象存储空间。这样虽然解决了内存内存碎片问题,但是如果对象很多,重新申请新的内存空间会很大,在内存不足的场景下,会对jvm运行造成很大的影响

3. 标记-整理(Mark-compact)

标记整理实际上是在标记清除算法上的优化,执行完标记清除全过程之后,再一次对内存进行整理,将所有存活对象统一向一端移动,这样解决了内存碎片问题。

4. 分代回收

目前jvm常用回收算法就是分代回收,年轻代以复制算法为主,老年代以标记整理算法为主。原因是年轻代对象比较多,每次垃圾回收都有很多的垃圾对象回收,而且要尽可能快的减少生命周期短的对象,存活的对象较少,这时候复制算法比较适合,只要将有标记的对象复制到另一个内存区域,其余全部清除,并且复制的数量较少,效率较高;而老年代是年轻代筛选出来的对象,被标记比较多,需要删除的对象比较少,显然采用标记整理效率较高。

六、JVM之垃圾回收的更多相关文章

  1. jvm的垃圾回收算法

    一.对象存活判断判断对象是否存活一般有两种方式:1.引用计数:每个对象有一个引用计数属性,新增一个引用时计数加1,引用释放时计数减1,计数为0时可以回收.此方法简单,无法解决对象相互循环引用的问题.2 ...

  2. JVM的垃圾回收机制详解和调优

    JVM的垃圾回收机制详解和调优 gc即垃圾收集机制是指jvm用于释放那些不再使用的对象所占用的内存.java语言并不要求jvm有gc,也没有规定gc如何工作.不过常用的jvm都有gc,而且大多数gc都 ...

  3. 03 JVM的垃圾回收机制

    1.前言 理解JVM的垃圾回收机制(简称GC)有什么好处呢?作为一名软件开发者,满足自己的好奇心将是一个很好的理由,不过更重要的是,理解GC工作机制可以帮助你写出更好的Java程序. 在学习GC前,你 ...

  4. JVM的垃圾回收机制 总结(垃圾收集、回收算法、垃圾回收器)

     相信和小编一样的程序猿们在日常工作或面试当中经常会遇到JVM的垃圾回收问题,有没有在夜深人静的时候详细捋一捋JVM垃圾回收机制中的知识点呢?没时间捋也没关系,因为小编接下来会给你捋一捋. 一. 技术 ...

  5. jvm详情——3、JVM基本垃圾回收算法回收策略

    JVM基本垃圾回收算法回收策略 引用计数(Reference Counting):比较古老的回收算法.原理是此对象有一个引用,即增加一个计数,删除一个引用则减少一个计数.垃圾回收时,只用收集计数为0的 ...

  6. 扒一扒JVM的垃圾回收机制,下次面试你准备好了吗

      相信和小编一样的程序猿们在日常工作或面试当中经常会遇到JVM的垃圾回收问题,有没有在夜深人静的时候详细捋一捋JVM垃圾回收机制中的知识点呢?没时间捋也没关系,因为小编接下来会给你捋一捋. 一. 技 ...

  7. JVM的垃圾回收机制

    JVM的垃圾回收机制:(GC通过确定对象是否被活动对象引用来确定是否收集该对象.) 1.触发GC(Garbage Collector)的条件. (1.GC在优先级最低的线程中运行,在未运行的线程中进行 ...

  8. 修改Tomcat的jvm的垃圾回收GC方式为CMS

    修改Tomcat的jvm的垃圾回收GC方式 cp $TOMCAT_HOME/bin/catalina.sh $TOMCAT_HOME/bin/catalina.sh.bak_20170815 vi $ ...

  9. JVM虚拟机—JVM的垃圾回收机制(转载)

    1.前言 理解JVM的垃圾回收机制(简称GC)有什么好处呢?作为一名软件开发者,满足自己的好奇心将是一个很好的理由,不过更重要的是,理解GC工作机制可以帮助你写出更好的Java程序. 在学习GC前,你 ...

  10. JVM(九):垃圾回收算法

    JVM(九):垃圾回收算法 在本文中,我们将从概念模型的角度探讨 JVM 是如何回收对象,包括 JVM 是如何判断一个对象已经死亡,什么时候在哪里进行了垃圾回收,垃圾回收有几种核心算法,每个算法优劣是 ...

随机推荐

  1. 软件模拟spi的注意事项

    前几天遇到了软件模拟spi的时候,读和写不一致的现象,后来仔细研究了一下,其实是时序性问题不对. spi的有四种时序,硬件实现的时候,很简单,初始化后直接调用api即可.但是软件模拟就比较麻烦. 举例 ...

  2. 通过Performance Monitor观察程序内存使用情况

    在学习C# 数据类型和内存等知识点时,看到利用Windows系统下的Performance Monitor-性能监测工具查看程序内存的使用情况.使用过程中遇到个别小问题,现在把观察程序内存的操作步骤简 ...

  3. HTML速查

    HTML 基本文档 <!DOCTYPE html> <html> <head> <title>文档标题</title> </head& ...

  4. kubernetes安装-二进制

    主要参考https://github.com/opsnull/follow-me-install-kubernetes-cluster,采用Flanel和docker 系统信息 角色 系统 CPU C ...

  5. 纪中10日T1 2300. 【noip普及组第一题】模板题

    2300. [noip普及组第一题]模板题 (File IO): input:template.in output:template.out 时间限制: 1000 ms  空间限制: 262144 K ...

  6. ES读写数据过程及原理

    ES读写数据过程及原理 倒排索引 首先来了解一下什么是倒排索引 倒排索引,就是建立词语与文档的对应关系(词语在什么文档出现,出现了多少次,在什么位置出现) 搜索的时候,根据搜索关键词,直接在索引中找到 ...

  7. jquery.datetimepicker中报错Cannot read property 'top' of undefined

    今天在项目里用到一个jQuery的时间插件,一开始自己写的测试demo完全么的问题 但当我把它放到项目里时问题来了,报了一个错:Cannot read property 'top' of undefi ...

  8. 树莓派pip安装opencv报错,Could not find a version that satisfies the requirement cv2 (from versions: )No matching distribution found for cv2

    前言 我在使用pip install opencv-python 时报错 Could not find a version that satisfies the requirement opencv ...

  9. 输出redis cluster集群所有节点指定的参数的配置

    需要:实现类似redis-trib.rb call 命令的功能,输出redis cluster集群所有节点指定的参数的配置 redis-trib.rb的输出 [redis@lxd-vm3 ~]$ re ...

  10. python全栈学习 day03

    换行符: \n 制表符: \t 字符串截取:顾头不顾尾 s[首:尾:步长] 首--->尾走向 和 步长方向一致 s[0:4:2] s[4:0:-2] a = "qwertyui&quo ...