1_info.py

# encoding: utf-8
import pandas as pd # 租房 基本信息
# 读取文件 df=dataframe
df = pd.read_json("zufang.json")
# print(df)
# print(df.columns) # 使用pandas的describe方法,打印基本信息
print(df.describe())
# 按照区,分别统计个数
print(df["district"].value_counts())
# print('**************************')
# # 二手房 基本信息
df = pd.read_json("ershoufang.json")
print(df.describe())
# 分别统计个数
print(df["district"].value_counts())

2_pie_chart.py

# coding:utf-8
import numpy as np
import pandas as pd
import json
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] myfont = FontProperties(
fname='/Users/seancheney/.matplotlib/mpl-data/fonts/ttf/SimHei.ttf') labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州', '顺义' df_zf = pd.read_json("ershoufang.json")
chaoyang_count = df_zf['district'].value_counts()['朝阳']
haidian_count = df_zf['district'].value_counts()['海淀']
changping_count = df_zf['district'].value_counts()['昌平']
dongcheng_count = df_zf['district'].value_counts()['东城']
daxing_count = df_zf['district'].value_counts()['大兴']
xicheng_count = df_zf['district'].value_counts()['西城']
fengtai_count = df_zf['district'].value_counts()['丰台']
shijingshan_count = df_zf['district'].value_counts()['石景山']
tongzhou_count = df_zf['district'].value_counts()['通州']
shunyi_count = df_zf['district'].value_counts()['顺义'] sizes = [
chaoyang_count,
haidian_count,
changping_count,
dongcheng_count,
daxing_count,
xicheng_count,
fengtai_count,
shijingshan_count,
tongzhou_count,
shunyi_count]
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
plt.subplot(121)
plt.pie(
sizes,
explode=explode,
labels=labels,
autopct='%1.1f%%',
shadow=True,
startangle=-90)
plt.axis('equal')
plt.title("房屋出售分布", fontproperties=myfont) labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州', '顺义'
df_zf = pd.read_json("zufang.json")
chaoyang_count = df_zf['district'].value_counts()['朝阳']
haidian_count = df_zf['district'].value_counts()['海淀']
changping_count = df_zf['district'].value_counts()['昌平']
dongcheng_count = df_zf['district'].value_counts()['东城']
daxing_count = df_zf['district'].value_counts()['大兴']
xicheng_count = df_zf['district'].value_counts()['西城']
fengtai_count = df_zf['district'].value_counts()['丰台']
shijingshan_count = df_zf['district'].value_counts()['石景山']
tongzhou_count = df_zf['district'].value_counts()['通州'] labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州'
sizes = [
chaoyang_count,
haidian_count,
changping_count,
dongcheng_count,
daxing_count,
xicheng_count,
fengtai_count,
shijingshan_count,
tongzhou_count]
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0)
plt.subplot(122)
plt.pie(
sizes,
explode=explode,
labels=labels,
autopct='%1.1f%%',
shadow=True,
startangle=-90)
plt.axis('equal')
plt.title("房屋出租分布", fontproperties=myfont)
plt.rc('font', family=['SimHei'])
plt.show()

3_hist.py

import numpy as np
import pandas as pd
import json
import matplotlib.pyplot as plt
from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] df = pd.read_json("ershoufang.json") print(df.columns) unitprice_values = df.unitprice
plt.hist(unitprice_values,bins=25)
plt.xlim(0, 200000)
plt.title(u"房屋出售每平米价格分布")
plt.xlabel(u'价格(单位:万/平方米)')
plt.ylabel(u'套数')
plt.show()

4_ratio.py

# 售租比
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] district = ('西城', '石景山', '东城', '海淀', '丰台', '昌平', '大兴', '朝阳', '通州') # 读取租房数据
df_zf = pd.read_json("zufang.json")
unitprice_zf = df_zf['price'] / df_zf['area']
df_zf['unitprice'] = unitprice_zf # print(df_zf) month_price = df_zf.groupby(by=['district']).sum(
)['unitprice'] / df_zf["district"].value_counts() # print(month_price) # # 读取二手房数据
df_esf = pd.read_json("ershoufang.json") sell_price = df_esf.groupby(by=['district']).sum(
)['unitprice'] / df_esf["district"].value_counts() # print(sell_price) xicheng_ratio = sell_price['西城'] / month_price['西城']
shijingshan_ratio = sell_price['石景山'] / month_price['石景山']
dongcheng_ratio = sell_price['东城'] / month_price['东城']
haidian_ratio = sell_price['海淀'] / month_price['海淀']
fengtai_ratio = sell_price['丰台'] / month_price['丰台']
changping_ratio = sell_price['昌平'] / month_price['昌平']
daxing_ratio = sell_price['大兴'] / month_price['大兴']
chaoyang_ratio = sell_price['朝阳'] / month_price['朝阳']
tongzhou_ratio = sell_price['通州'] / month_price['通州']
#
#
ratio = (
xicheng_ratio,
shijingshan_ratio,
dongcheng_ratio,
haidian_ratio,
fengtai_ratio,
changping_ratio,
daxing_ratio,
chaoyang_ratio,
tongzhou_ratio
) fig, ax = plt.subplots() y_pos = np.arange(len(district))
# performance = ratio ax.barh(y_pos, ratio, align='center', color='green', ecolor='black')
ax.set_yticks(y_pos)
ax.set_yticklabels(district)
# ax.invert_yaxis()
ax.set_xlabel('售租比(单位:月)')
ax.set_title('各区房屋售租比') plt.show()

18.scrapy_maitian_analysis的更多相关文章

  1. CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking)

    CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking) 我在(Modern OpenGL用Shader拾取 ...

  2. ABP(现代ASP.NET样板开发框架)系列之18、ABP应用层——权限验证

    点这里进入ABP系列文章总目录 ABP(现代ASP.NET样板开发框架)系列之18.ABP应用层——权限验证 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目 ...

  3. ASP.NET MVC5+EF6+EasyUI 后台管理系统(18)-权限管理系统-表数据

    系列目录 这一节,我们插入数据来看看数据流,让各位同学,知道这个权限表交互是怎么一个流程,免得大家后天雾里来雾里去首先我再解释一些表,SysUser和SysRole表不用解释了. SysRoleSys ...

  4. C#开发微信门户及应用(18)-微信企业号的通讯录管理开发之成员管理

    在上篇随笔<C#开发微信门户及应用(17)-微信企业号的通讯录管理开发之部门管理>介绍了通讯录的部门的相关操作管理,通讯录管理包括部门管理.成员管理.标签管理三个部分,本篇主要介绍成员的管 ...

  5. [MySQL Reference Manual] 18 复制

    18 复制 18 复制 18.1 复制配置 18.1.1 基于Binary Log的数据库复制配置 18.1.2 配置基于Binary log的复制 18.1.2.1 设置复制master的配置 18 ...

  6. Hihocoder 太阁最新面经算法竞赛18

    Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...

  7. grep-2.26 sed-4.2.2 awk-4.1.4 wget-1.18 pcregrep-8.39 pcre2grep-10.22 for windows 最新版本静态编译

    -------------------------------------------------------------------------------------------- grep (G ...

  8. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  9. Java随机生成18位身份证号

    package com.ihome.data; import java.text.SimpleDateFormat; import java.util.Calendar; import java.ut ...

随机推荐

  1. vue在v-for循环中绑定v-model

    原始示例 <div v-for="item in items"> <input type="text" v-model="'good ...

  2. JAVA Java中@Override的作用

    @Override是伪代码,表示重写(当然不写也可以),不过写上有如下好处: 1.可以当注释用,方便阅读: 2.编译器可以给你验证@Override下面的方法名是否是你父类中所有的,如果没有则报错.例 ...

  3. GDI+用PNG图片做半透明异型窗口

    http://hi.baidu.com/bluew/blog/item/2ecbe58bf93a937d9f2fb4de.html2007-08-09 00:52 我是用PNG图片Alpha透明的方式 ...

  4. hdu多校第八场 1003 (hdu6659) Acesrc and Good Numbers 数论/打表

    题意: 对于某数k,若数字d在1-k中出现次数恰好为k,则称k为好数. 给定d,x,求x以内,对于d而言最大的好数.k范围1e18. 题解: 打表二分即可. 但是,1e18的表是没法打出来的,只能在o ...

  5. ggplot2在一幅图上画两条曲线

    ggplot2在一幅图上画两条曲线 print(data)后的结果是 C BROWN.P MI.P 0 0.9216 0.9282 30 0.9240 0.9282 100 0.9255 0.9282 ...

  6. WinDbg解决BHO不加载

    昨天zhengwei同学说他机器上的一个BHO不能正常加载,我把BHO的代码拿过来,在我的两台机器上都验证了一下,一台是Win7+IE8的环境,一台是XP+IE7的环境,都能正常加载.zhengwei ...

  7. python之tkinter学习目录

    前言 下面的目录结构,采用的学习视频资料是网易云课堂中[莫凡]老师的,在目录的最下面的地方给出了对应的链接! 学习是逐渐积累起来的,代码也是!下面的每一篇中的对应代码,都秉承着这样的一个理念:代码是成 ...

  8. Spring源码由浅入深系列三 refresh

    spring中的refresh是一个相当重要的方法.它完成IOC的第一个阶段,将xml中的bean转化为beanDefinition.详细说明如上图所示. 在上图中,创建obtainFreshBean ...

  9. 解决jqGrid中,当前页一直显示为0的问题

    项目中,经常会见到使用 jqGrid 进行一些数据的列表展示,而且使用起来也比较方便.但是有时会遇到一些奇怪的问题,比如前几天我就遇到了在使用 jqGrid 时,当前页一直显示为 0 的问题.下图就是 ...

  10. <爬虫实战>豆瓣电影TOP250(三种解析方法)

    1.豆瓣电影排行.py # 目标:爬取豆瓣电影排行榜TOP250的电影信息 # 信息包括:电影名字,上映时间,主演,评分,导演,一句话评价 # 解析用学过的几种方法都实验一下①正则表达式.②Beaut ...