18.scrapy_maitian_analysis
1_info.py
# encoding: utf-8
import pandas as pd
# 租房 基本信息
# 读取文件 df=dataframe
df = pd.read_json("zufang.json")
# print(df)
# print(df.columns)
# 使用pandas的describe方法,打印基本信息
print(df.describe())
# 按照区,分别统计个数
print(df["district"].value_counts())
# print('**************************')
# # 二手房 基本信息
df = pd.read_json("ershoufang.json")
print(df.describe())
# 分别统计个数
print(df["district"].value_counts())
2_pie_chart.py
# coding:utf-8
import numpy as np
import pandas as pd
import json
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
myfont = FontProperties(
fname='/Users/seancheney/.matplotlib/mpl-data/fonts/ttf/SimHei.ttf')
labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州', '顺义'
df_zf = pd.read_json("ershoufang.json")
chaoyang_count = df_zf['district'].value_counts()['朝阳']
haidian_count = df_zf['district'].value_counts()['海淀']
changping_count = df_zf['district'].value_counts()['昌平']
dongcheng_count = df_zf['district'].value_counts()['东城']
daxing_count = df_zf['district'].value_counts()['大兴']
xicheng_count = df_zf['district'].value_counts()['西城']
fengtai_count = df_zf['district'].value_counts()['丰台']
shijingshan_count = df_zf['district'].value_counts()['石景山']
tongzhou_count = df_zf['district'].value_counts()['通州']
shunyi_count = df_zf['district'].value_counts()['顺义']
sizes = [
chaoyang_count,
haidian_count,
changping_count,
dongcheng_count,
daxing_count,
xicheng_count,
fengtai_count,
shijingshan_count,
tongzhou_count,
shunyi_count]
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
plt.subplot(121)
plt.pie(
sizes,
explode=explode,
labels=labels,
autopct='%1.1f%%',
shadow=True,
startangle=-90)
plt.axis('equal')
plt.title("房屋出售分布", fontproperties=myfont)
labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州', '顺义'
df_zf = pd.read_json("zufang.json")
chaoyang_count = df_zf['district'].value_counts()['朝阳']
haidian_count = df_zf['district'].value_counts()['海淀']
changping_count = df_zf['district'].value_counts()['昌平']
dongcheng_count = df_zf['district'].value_counts()['东城']
daxing_count = df_zf['district'].value_counts()['大兴']
xicheng_count = df_zf['district'].value_counts()['西城']
fengtai_count = df_zf['district'].value_counts()['丰台']
shijingshan_count = df_zf['district'].value_counts()['石景山']
tongzhou_count = df_zf['district'].value_counts()['通州']
labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州'
sizes = [
chaoyang_count,
haidian_count,
changping_count,
dongcheng_count,
daxing_count,
xicheng_count,
fengtai_count,
shijingshan_count,
tongzhou_count]
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0)
plt.subplot(122)
plt.pie(
sizes,
explode=explode,
labels=labels,
autopct='%1.1f%%',
shadow=True,
startangle=-90)
plt.axis('equal')
plt.title("房屋出租分布", fontproperties=myfont)
plt.rc('font', family=['SimHei'])
plt.show()
3_hist.py
import numpy as np
import pandas as pd
import json
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
df = pd.read_json("ershoufang.json")
print(df.columns)
unitprice_values = df.unitprice
plt.hist(unitprice_values,bins=25)
plt.xlim(0, 200000)
plt.title(u"房屋出售每平米价格分布")
plt.xlabel(u'价格(单位:万/平方米)')
plt.ylabel(u'套数')
plt.show()
4_ratio.py
# 售租比
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei']
district = ('西城', '石景山', '东城', '海淀', '丰台', '昌平', '大兴', '朝阳', '通州')
# 读取租房数据
df_zf = pd.read_json("zufang.json")
unitprice_zf = df_zf['price'] / df_zf['area']
df_zf['unitprice'] = unitprice_zf
# print(df_zf)
month_price = df_zf.groupby(by=['district']).sum(
)['unitprice'] / df_zf["district"].value_counts()
# print(month_price)
# # 读取二手房数据
df_esf = pd.read_json("ershoufang.json")
sell_price = df_esf.groupby(by=['district']).sum(
)['unitprice'] / df_esf["district"].value_counts()
# print(sell_price)
xicheng_ratio = sell_price['西城'] / month_price['西城']
shijingshan_ratio = sell_price['石景山'] / month_price['石景山']
dongcheng_ratio = sell_price['东城'] / month_price['东城']
haidian_ratio = sell_price['海淀'] / month_price['海淀']
fengtai_ratio = sell_price['丰台'] / month_price['丰台']
changping_ratio = sell_price['昌平'] / month_price['昌平']
daxing_ratio = sell_price['大兴'] / month_price['大兴']
chaoyang_ratio = sell_price['朝阳'] / month_price['朝阳']
tongzhou_ratio = sell_price['通州'] / month_price['通州']
#
#
ratio = (
xicheng_ratio,
shijingshan_ratio,
dongcheng_ratio,
haidian_ratio,
fengtai_ratio,
changping_ratio,
daxing_ratio,
chaoyang_ratio,
tongzhou_ratio
)
fig, ax = plt.subplots()
y_pos = np.arange(len(district))
# performance = ratio
ax.barh(y_pos, ratio, align='center', color='green', ecolor='black')
ax.set_yticks(y_pos)
ax.set_yticklabels(district)
# ax.invert_yaxis()
ax.set_xlabel('售租比(单位:月)')
ax.set_title('各区房屋售租比')
plt.show()
18.scrapy_maitian_analysis的更多相关文章
- CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking)
CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking) 我在(Modern OpenGL用Shader拾取 ...
- ABP(现代ASP.NET样板开发框架)系列之18、ABP应用层——权限验证
点这里进入ABP系列文章总目录 ABP(现代ASP.NET样板开发框架)系列之18.ABP应用层——权限验证 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目 ...
- ASP.NET MVC5+EF6+EasyUI 后台管理系统(18)-权限管理系统-表数据
系列目录 这一节,我们插入数据来看看数据流,让各位同学,知道这个权限表交互是怎么一个流程,免得大家后天雾里来雾里去首先我再解释一些表,SysUser和SysRole表不用解释了. SysRoleSys ...
- C#开发微信门户及应用(18)-微信企业号的通讯录管理开发之成员管理
在上篇随笔<C#开发微信门户及应用(17)-微信企业号的通讯录管理开发之部门管理>介绍了通讯录的部门的相关操作管理,通讯录管理包括部门管理.成员管理.标签管理三个部分,本篇主要介绍成员的管 ...
- [MySQL Reference Manual] 18 复制
18 复制 18 复制 18.1 复制配置 18.1.1 基于Binary Log的数据库复制配置 18.1.2 配置基于Binary log的复制 18.1.2.1 设置复制master的配置 18 ...
- Hihocoder 太阁最新面经算法竞赛18
Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...
- grep-2.26 sed-4.2.2 awk-4.1.4 wget-1.18 pcregrep-8.39 pcre2grep-10.22 for windows 最新版本静态编译
-------------------------------------------------------------------------------------------- grep (G ...
- 《C#本质论》读书笔记(18)多线程处理
.NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...
- Java随机生成18位身份证号
package com.ihome.data; import java.text.SimpleDateFormat; import java.util.Calendar; import java.ut ...
随机推荐
- 安装percona-toolkit.rpm时候报错:perl(Time::HiRes) is needed by percona-toolkit-2.2.16-1.noarch
1.安装percona-toolkit.rpm时候报错: warning: percona-toolkit.rpm: Header V4 DSA/SHA1 Signature, key ID cd2e ...
- 脚本启动SpringBoot(jar)
#!/bin/sh RESOURCE_NAME=springbsit-api.jar tpid=`ps -ef|grep $RESOURCE_NAME|grep -v grep|grep -v kil ...
- Jmeter-【beanshell处理器】-随机获取手机号
一.通过操作变量 二.引用外部Java文件 三.引用外部class文件
- delphi xe10 传感器操作
MotionSensor1: TMotionSensor; 加速传感器 MotionSensor1.Sensor(AngleAccelX.AngleAccelY.AngleAccelZ)加速度 pro ...
- eclipse如何实现智能提示功能
一直时候用idea很久没有使用eclipse了,idead的ctrl+鼠标滚轮是可以调节字体大小,这项功能是我的最爱. 早就忘记eclipse的智能助手设置,今天翻下以前的笔记,觉得还是做个博客方便今 ...
- 报错:[Vue warn]: Avoid mutating a prop directly since the value will be overwritten whenever the paren
今天在做Vue的时候,子组件关闭的时候,报如下错误 报错:vue.esm.js?65d7:610 [Vue warn]: Avoid mutating a prop directly since th ...
- Openstack Nova 源码分析 — Create instances (nova-conductor阶段)
目录 目录 前言 Instance Flavor Instance Status Virt Driver Resource Tracker nova-conductor Create Instance ...
- 2019 牛客多校第三场 H Magic Line
题目链接:https://ac.nowcoder.com/acm/contest/883/H 题目大意 给定 N 个不同的整数点,N 为偶数,求一条直线,这条直线能把这 N 个点对半分开,输出这条直线 ...
- day 89 DjangoRestFramework学习三之认证组件、权限组件、频率组件、url注册器、响应器、分页组件
DjangoRestFramework学习三之认证组件.权限组件.频率组件.url注册器.响应器.分页组件 本节目录 一 认证组件 二 权限组件 三 频率组件 四 URL注册器 五 响应器 六 分 ...
- USACO 2004 Open The Cow Lineup /// oj25965
题目大意: 输入n k,n头牛 k个品种 接下来n行描述每头牛的品种 输出无法找出的最短子序列的长度 Sample Input 14 515325134425123 Sample Output 3 H ...