1_info.py

# encoding: utf-8
import pandas as pd # 租房 基本信息
# 读取文件 df=dataframe
df = pd.read_json("zufang.json")
# print(df)
# print(df.columns) # 使用pandas的describe方法,打印基本信息
print(df.describe())
# 按照区,分别统计个数
print(df["district"].value_counts())
# print('**************************')
# # 二手房 基本信息
df = pd.read_json("ershoufang.json")
print(df.describe())
# 分别统计个数
print(df["district"].value_counts())

2_pie_chart.py

# coding:utf-8
import numpy as np
import pandas as pd
import json
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.font_manager import FontProperties from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] myfont = FontProperties(
fname='/Users/seancheney/.matplotlib/mpl-data/fonts/ttf/SimHei.ttf') labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州', '顺义' df_zf = pd.read_json("ershoufang.json")
chaoyang_count = df_zf['district'].value_counts()['朝阳']
haidian_count = df_zf['district'].value_counts()['海淀']
changping_count = df_zf['district'].value_counts()['昌平']
dongcheng_count = df_zf['district'].value_counts()['东城']
daxing_count = df_zf['district'].value_counts()['大兴']
xicheng_count = df_zf['district'].value_counts()['西城']
fengtai_count = df_zf['district'].value_counts()['丰台']
shijingshan_count = df_zf['district'].value_counts()['石景山']
tongzhou_count = df_zf['district'].value_counts()['通州']
shunyi_count = df_zf['district'].value_counts()['顺义'] sizes = [
chaoyang_count,
haidian_count,
changping_count,
dongcheng_count,
daxing_count,
xicheng_count,
fengtai_count,
shijingshan_count,
tongzhou_count,
shunyi_count]
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0, 0)
plt.subplot(121)
plt.pie(
sizes,
explode=explode,
labels=labels,
autopct='%1.1f%%',
shadow=True,
startangle=-90)
plt.axis('equal')
plt.title("房屋出售分布", fontproperties=myfont) labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州', '顺义'
df_zf = pd.read_json("zufang.json")
chaoyang_count = df_zf['district'].value_counts()['朝阳']
haidian_count = df_zf['district'].value_counts()['海淀']
changping_count = df_zf['district'].value_counts()['昌平']
dongcheng_count = df_zf['district'].value_counts()['东城']
daxing_count = df_zf['district'].value_counts()['大兴']
xicheng_count = df_zf['district'].value_counts()['西城']
fengtai_count = df_zf['district'].value_counts()['丰台']
shijingshan_count = df_zf['district'].value_counts()['石景山']
tongzhou_count = df_zf['district'].value_counts()['通州'] labels = '朝阳', '海淀', '昌平', '东城', '大兴', '西城', '丰台', '石景山', '通州'
sizes = [
chaoyang_count,
haidian_count,
changping_count,
dongcheng_count,
daxing_count,
xicheng_count,
fengtai_count,
shijingshan_count,
tongzhou_count]
explode = (0.1, 0, 0, 0, 0, 0, 0, 0, 0)
plt.subplot(122)
plt.pie(
sizes,
explode=explode,
labels=labels,
autopct='%1.1f%%',
shadow=True,
startangle=-90)
plt.axis('equal')
plt.title("房屋出租分布", fontproperties=myfont)
plt.rc('font', family=['SimHei'])
plt.show()

3_hist.py

import numpy as np
import pandas as pd
import json
import matplotlib.pyplot as plt
from pylab import * mpl.rcParams['font.sans-serif'] = ['SimHei'] df = pd.read_json("ershoufang.json") print(df.columns) unitprice_values = df.unitprice
plt.hist(unitprice_values,bins=25)
plt.xlim(0, 200000)
plt.title(u"房屋出售每平米价格分布")
plt.xlabel(u'价格(单位:万/平方米)')
plt.ylabel(u'套数')
plt.show()

4_ratio.py

# 售租比
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from pylab import *
mpl.rcParams['font.sans-serif'] = ['SimHei'] district = ('西城', '石景山', '东城', '海淀', '丰台', '昌平', '大兴', '朝阳', '通州') # 读取租房数据
df_zf = pd.read_json("zufang.json")
unitprice_zf = df_zf['price'] / df_zf['area']
df_zf['unitprice'] = unitprice_zf # print(df_zf) month_price = df_zf.groupby(by=['district']).sum(
)['unitprice'] / df_zf["district"].value_counts() # print(month_price) # # 读取二手房数据
df_esf = pd.read_json("ershoufang.json") sell_price = df_esf.groupby(by=['district']).sum(
)['unitprice'] / df_esf["district"].value_counts() # print(sell_price) xicheng_ratio = sell_price['西城'] / month_price['西城']
shijingshan_ratio = sell_price['石景山'] / month_price['石景山']
dongcheng_ratio = sell_price['东城'] / month_price['东城']
haidian_ratio = sell_price['海淀'] / month_price['海淀']
fengtai_ratio = sell_price['丰台'] / month_price['丰台']
changping_ratio = sell_price['昌平'] / month_price['昌平']
daxing_ratio = sell_price['大兴'] / month_price['大兴']
chaoyang_ratio = sell_price['朝阳'] / month_price['朝阳']
tongzhou_ratio = sell_price['通州'] / month_price['通州']
#
#
ratio = (
xicheng_ratio,
shijingshan_ratio,
dongcheng_ratio,
haidian_ratio,
fengtai_ratio,
changping_ratio,
daxing_ratio,
chaoyang_ratio,
tongzhou_ratio
) fig, ax = plt.subplots() y_pos = np.arange(len(district))
# performance = ratio ax.barh(y_pos, ratio, align='center', color='green', ecolor='black')
ax.set_yticks(y_pos)
ax.set_yticklabels(district)
# ax.invert_yaxis()
ax.set_xlabel('售租比(单位:月)')
ax.set_title('各区房屋售租比') plt.show()

18.scrapy_maitian_analysis的更多相关文章

  1. CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking)

    CSharpGL(18)分别处理glDrawArrays()和glDrawElements()两种方式下的拾取(ColorCodedPicking) 我在(Modern OpenGL用Shader拾取 ...

  2. ABP(现代ASP.NET样板开发框架)系列之18、ABP应用层——权限验证

    点这里进入ABP系列文章总目录 ABP(现代ASP.NET样板开发框架)系列之18.ABP应用层——权限验证 ABP是“ASP.NET Boilerplate Project (ASP.NET样板项目 ...

  3. ASP.NET MVC5+EF6+EasyUI 后台管理系统(18)-权限管理系统-表数据

    系列目录 这一节,我们插入数据来看看数据流,让各位同学,知道这个权限表交互是怎么一个流程,免得大家后天雾里来雾里去首先我再解释一些表,SysUser和SysRole表不用解释了. SysRoleSys ...

  4. C#开发微信门户及应用(18)-微信企业号的通讯录管理开发之成员管理

    在上篇随笔<C#开发微信门户及应用(17)-微信企业号的通讯录管理开发之部门管理>介绍了通讯录的部门的相关操作管理,通讯录管理包括部门管理.成员管理.标签管理三个部分,本篇主要介绍成员的管 ...

  5. [MySQL Reference Manual] 18 复制

    18 复制 18 复制 18.1 复制配置 18.1.1 基于Binary Log的数据库复制配置 18.1.2 配置基于Binary log的复制 18.1.2.1 设置复制master的配置 18 ...

  6. Hihocoder 太阁最新面经算法竞赛18

    Hihocoder 太阁最新面经算法竞赛18 source: https://hihocoder.com/contest/hihointerview27/problems 题目1 : Big Plus ...

  7. grep-2.26 sed-4.2.2 awk-4.1.4 wget-1.18 pcregrep-8.39 pcre2grep-10.22 for windows 最新版本静态编译

    -------------------------------------------------------------------------------------------- grep (G ...

  8. 《C#本质论》读书笔记(18)多线程处理

    .NET Framework 4.0 看(本质论第3版) .NET Framework 4.5 看(本质论第4版) .NET 4.0为多线程引入了两组新API:TPL(Task Parallel Li ...

  9. Java随机生成18位身份证号

    package com.ihome.data; import java.text.SimpleDateFormat; import java.util.Calendar; import java.ut ...

随机推荐

  1. leetcode-并查集

    - 题目:130 并查集: class Solution: def solve(self, board: List[List[str]]) -> None: """ ...

  2. NX二次开发-UFUN创建图层类别UF_LAYER_create_category

    NX11+VS2013 #include <uf.h> #include <uf_layer.h> UF_initialize(); //创建图层类别 UF_LAYER_cat ...

  3. NX二次开发-创建功能区工具栏UF_UI_create_ribbon

    NX9+VS2012 1.打开D:\Program Files\Siemens\NX 9.0\UGII\menus\ug_main.men 找到装配和PMI,在中间加上一段 TOGGLE_BUTTON ...

  4. ionic-CSS:ionic select

    ylbtech-ionic-CSS:ionic select 1.返回顶部 1. ionic select ionic select 的 select 相比原生的要更加美观些.但是弹出的可选选项样式是 ...

  5. 新版本Mongo4.0 新建用户

    db.createUser( { user: “admin”, pwd: “xxx”, roles: [ { role: “userAdminAnyDatabase”, db: “admin” } ] ...

  6. CodeForces-1221A-2048 Game-思维题

    You are playing a variation of game 2048. Initially you have a multiset ss of nn integers. Every int ...

  7. 数据分析相关概念(numpy)

    矢量 矢量是指一堆形成的集合. 多维数组也叫做矢量化计算. 单独一个数叫做标量 例: import datetime as dt import numpy as np n2=10000 start2 ...

  8. C++数据类型之字符串类型&布尔类型&数据的输入

    字符串型 **作用**:用于表示一串字符 **两种风格** 1. **C风格字符串**: char 变量名 [ ]  =  "字符串值" 2.**C++风格字符串**:  stri ...

  9. 唯一id

    package com.debug.kill.server.utils; /** * Created by Administrator on 2019/6/20. */ import org.apac ...

  10. asp.net core2.0 依赖注入 AddTransient与AddScoped的区别 - 晓剑 - CSDN博客

    原文:asp.net core2.0 依赖注入 AddTransient与AddScoped的区别 - 晓剑 - CSDN博客 原文地址:http://www.tnblog.net/aojiancc2 ...