1 定义

VAR模型除了分析自身滞后项的影响外,还分析其他相关因素的滞后项对未来值产生的影响参考
用来分析随机扰动对系统的动态冲击的大小,正负以及持续时间

VAR模型的具体步骤

  • 1.先检验序列的平稳性,看序列是否平稳,或者一阶单整,或者更高阶;
  • 2.根据AIC SBC等准则选择Var模型的滞后阶数;
  • 3.看VAR模型根是否在单位圆内,在可继续后续分析;
  • 4.若同阶单整,则进行协整检验,看变量之间有没有协整关系;
  • 5.granger因果检验,看俩俩变量有没有相关关系,并不能证明有因果关系;
  • 6.脉冲响应,看变量对外界冲击的反馈;
  • 7.方差分解…
    var主要目的不是回归系数,是为了方差分解和脉冲响应分析
    参考VAR模型也叫向量自回归模型,简单的来说就是刻画向量之间的数量关系①能进行回归,前提是平稳数据,②回归发生在向量之间,那么向量之间要存在一定的关系,统计上的因果关系,因此就需要进行格兰杰因果关系检验,检验的前提也是平稳的时间序列③因此要最先进行平稳性检验。
    总结一下就是:
  • 平稳性检验
  • 格兰杰因果检验
  • 进行VAR

    1.1 平稳性检验

  • 通过单位根检验是平稳数据,则继续进行格兰杰因果检验
  • 不是平稳数据,则要进行平稳化处理,取对数或者差分

    1.2 格兰杰检验

    进行格兰杰因果检验的时候要判定滞后阶数

    1.3 VAR模型的公式

    \[
    y_{t}=\beta_{1} \cdot y_{t-1}+\alpha_{1} \cdot x_{t-1}+\beta_{2} \cdot y_{t-2}+\alpha_{2} \cdot x_{t-2}+\ldots
    \]
    或者下面这个矩阵定义式是一样的
    第一一个P阶VAR模型VAR(P)
    \[
    Y_{t}=\sum_{i=1}^{p} \Pi_{i} Y_{t-i}+U_{t}=\Pi_{1} Y_{t-1}+\Pi_{2} Y_{t-2}+\quad+\Pi_{p} Y_{t-p}+U_{t}
    \]
    \(Y_t=(y_1t,y_2t...y_Nt)\)是N1阶时间序列变量,\(\Pi_{i}(i=1,2, \quad, p)\)是第i个待估参数的的NN矩阵,\(U_{t}=\left(u_{1 t} \mathbf{u}_{2 t} \quad\mathbf{u}_{N t}\right)^{T}\)是N*1阶随机误差向量列。p是模型的滞后阶数。
    VAR模型是由单变量的AR模型推广到多变量的组成的向量自回归模型的

    1.4 建立VAR模型的目的

  • 预测,可以用于长期预测
  • 脉冲响应分析和方差分解,用于变量间动态结构的分析
    reference

后面补充公式模型
还有python代码

建模步骤及公式

代码实现

利用Python中的numpy和pandas包做时间序列,我是第一次做

VAR模型学习笔记的更多相关文章

  1. 概率图模型学习笔记:HMM、MEMM、CRF

    作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商 ...

  2. NIO模型学习笔记

    NIO模型学习笔记 简介 Non-blocking I/O 或New I/O 自JDK1.4开始使用 应用场景:高并发网络服务器支持 概念理解 模型:对事物共性的抽象 编程模型:对编程共性的抽象 BI ...

  3. Pytorch线性规划模型 学习笔记(一)

    Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare d ...

  4. LDA主题模型学习笔记5:C源代码理解

    1.说明 本文对LDA原始论文的作者所提供的C代码中LDA的主要逻辑部分做凝视,原代码可在这里下载到:https://github.com/Blei-Lab/lda-c 这份代码实现论文<Lat ...

  5. HMM模型学习笔记(前向算法实例)

    HMM算法想必大家已经听说了好多次了,完全看公式一头雾水.但是HMM的基本理论其实很简单.因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察 ...

  6. 微软CodeDom模型学习笔记(全)

    CodeDomProvider MSDN描述 CodeDomProvider可用于创建和检索代码生成器和代码编译器的实例.代码生成器可用于以特定的语言生成代码,而代码编译器可用于将代码编译为程序集. ...

  7. GAN︱生成模型学习笔记(运行机制、NLP结合难点、应用案例、相关Paper)

    我对GAN"生成对抗网络"(Generative Adversarial Networks)的看法: 前几天在公开课听了新加坡国立大学[机器学习与视觉实验室]负责人冯佳时博士在[硬 ...

  8. LDA主题模型学习笔记3.5:变分參数推导

    如今来推导一下得到变分參数更新式的过程.这一部分是在论文的附录中,为避免陷入过多细节而影响总体理解.能够在刚開始学习LDA的时候先不关注求解细节.首先要把L写成关于γ,ϕ\gamma,\phi函数.依 ...

  9. OSI七层模型学习笔记

    1.简介 什么是OSI模型呢? OSI模型全名Open System InterConnect 即开放式系统互联,是国际标准化组织(ISO)提出的一个试图使各种计算机在世界范围内互连为网络的标准框架, ...

随机推荐

  1. JS事件绑定的三种方式比较

    js事件 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...

  2. 安装npm install时,长时间停留在fetchMetadata的解决方法

    安装npm install时,长时间停留在fetchMetadata: sill mapToRegistry uri http://registry.npmjs.org/whatwg-fetch处, ...

  3. uniapp后台api设计(微信user表)

    MySQL 创建数据库: CREATE  DATABASE [IF NOT EXISTS] <数据库名> [[DEFAULT] CHARACTER SET <字符集名>] [[ ...

  4. 【macOS使用技巧】使用空格键快速预览文件内容

    Quickview 是mac系统上一个强大的预览功能, 可以预览 mp4 mov等音频文件, 当然图片.文本.也都可以进行预览. 在系统中如果你希望快速浏览一下文件而不想打开的文件的话只要选择文件然后 ...

  5. 一、threejs————灯光阴影

    threejs设置阴影有三个注意点 1.只有支持阴影的灯光才可以 pointLight,spotlight,directionallight 2.添加摄像机辅助器 THREE.CameraHelper ...

  6. 吴裕雄--天生自然 R语言数据可视化绘图(3)

    par(ask=TRUE) opar <- par(no.readonly=TRUE) # record current settings # Listing 11.1 - A scatter ...

  7. docker - apt-get更换国内源解决Dockerfile构建速度过慢

    背景 使用ubuntu镜像一般apt-get源地址都是在国外导致在构建时因为源地址问题导致下载速度极其得慢 在构建中应事先修改apt-get源地址来避免因下载速度过慢导致的构建缓慢问题 方案 在Doc ...

  8. python 访问sql server数据库

    访问数据库 cnxn = pyodbc.connect("Driver={SQL Server};Server=localhost;Database=用户名;uid=sa;pwd=密码&qu ...

  9. gogs搭建git服务教程

    使用gogs搭建自己的git服务!!! 一.GIT服务器搭建方式 上一节课我们讲过GIT是一个分布式版本管理系统,既然是分布那么必定会涉及远程通信,那么GIT是采用什么协议进行远程通信的呢? git支 ...

  10. 如何开发自己的第一个 Serverless Component

    前言 上一篇 基于 Serverless Component 的全栈解决方案 介绍 Serverless Component 是什么和如何使用 Serverless Component 开发一个全栈应 ...