hdu6606多校第四次04——线段树加速dp
/*
首先想到二分答案,难点在于如何判断是否有K段,每段和<=mid
把问题转化成求最多有R段,最少有L段,每段的的和<=mid,如果 L<=K<=R 那么显然存在把这个序列分成K段的策略
用dp_max[i]表示到i位最多可分成的段数,那么只要枚举下标为[1,i-1]里所有 pre[j]+mid<=pre[i]的 j , 找到最大的dp_max[j]再+1就是dp_max[i]
dp_min[i]同理,然后一旦找到 dp_min[i]<=K<=dp_max[i] 就是可行
可是n的范围是2e5,我们可以用线段树来优化找dp_max[j]的过程:因为找的是所有pre[j]>=pre[i]-mid的j,那直接用线段树维护代表pre[j]的dp_max[j]即可,然后就可以进行查询
要注意处理边界问题(pre[0]=0的情况)
*/
#include<bits/stdc++.h>
using namespace std;
#define maxn 200005
#define ll long long
#define INF 0x3f3f3f3f3f3f
ll m,k,n,a[maxn],pre[maxn],s[maxn]; #define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
int Max[maxn<<];
void pushup(int rt){Max[rt]=max(Max[rt<<],Max[rt<<|]);}
void update(int pos,int val,int l,int r,int rt){
if(l==r){
Max[rt]=val;return;
}
int m=l+r>>;
if(pos<=m)update(pos,val,lson);
else update(pos,val,rson);
pushup(rt);
}
int query(int L,int R,int l,int r,int rt){
if(L<=l && R>=r){return Max[rt];}
int m=l+r>>,res=-0x3f3f3f3f;
if(L<=m)res=max(res,query(L,R,lson));
if(R>m)res=max(res,query(L,R,rson));
return res;
}
int zero;
int judge(ll mid){
memset(Max,-0x3f,sizeof Max);
update(zero,,,m,);
for(int i=;i<=n;i++){
int pos1=lower_bound(s+,s++m,pre[i]-mid)-s;
int pos2=lower_bound(s+,s++m,pre[i])-s;
if(pos1>m)continue;//越界了,不去线段树里查询
int tmp=query(pos1,m,,m,);//查询区间的最大值
tmp++;
if(tmp>=k)return ;
else update(pos2,tmp,,m,);
}
return ;
} int main(){
int t;cin>>t;
while(t--){
scanf("%lld%lld",&n,&k);
for(int i=;i<=n;i++){
scanf("%lld",&a[i]);
pre[i]=pre[i-]+a[i];
s[++m]=pre[i];
}
s[++m]=;
sort(s+,s++m);
m=unique(s+,s++m)-s-;
zero=lower_bound(s+,s++m,)-s; ll mid,ans,L=-INF,R=INF;
while(L<=R){
mid=L+R>>;
if(judge(mid))
ans=mid,R=mid-;
else L=mid+;
}
cout<<ans<<endl;
}
return ;
}
hdu6606多校第四次04——线段树加速dp的更多相关文章
- 2016暑假多校联合---Rikka with Sequence (线段树)
2016暑假多校联合---Rikka with Sequence (线段树) Problem Description As we know, Rikka is poor at math. Yuta i ...
- 2018.07.08 hdu4521 小明系列问题——小明序列(线段树+简单dp)
小明系列问题--小明序列 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others) Proble ...
- Codeforces Round #271 (Div. 2) E题 Pillars(线段树维护DP)
题目地址:http://codeforces.com/contest/474/problem/E 第一次遇到这样的用线段树来维护DP的题目.ASC中也遇到过,当时也非常自然的想到了线段树维护DP,可是 ...
- 2018.09.12 poj2376Cleaning Shifts(线段树+简单dp)
传送门 貌似贪心能过啊%%%. 本蒟蒻写的线段树优化dp. 式子很好推啊. f[i]表示覆盖1~i所需的最小代价. 那么显然对于一个区间[li,ri]" role="present ...
- CF833B The Bakery 线段树,DP
CF833B The Bakery LG传送门 线段树优化DP. 其实这是很久以前就应该做了的一道题,由于颓废一直咕在那里,其实还是挺不错的一道题. 先考虑\(O(n^2k)\)做法:设\(f[i][ ...
- Codeforces Round #426 (Div. 2) D 线段树优化dp
D. The Bakery time limit per test 2.5 seconds memory limit per test 256 megabytes input standard inp ...
- codeforces Good bye 2016 E 线段树维护dp区间合并
codeforces Good bye 2016 E 线段树维护dp区间合并 题目大意:给你一个字符串,范围为‘0’~'9',定义一个ugly的串,即串中的子串不能有2016,但是一定要有2017,问 ...
- BZOJ2090: [Poi2010]Monotonicity 2【线段树优化DP】
BZOJ2090: [Poi2010]Monotonicity 2[线段树优化DP] Description 给出N个正整数a[1..N],再给出K个关系符号(>.<或=)s[1..k]. ...
- Codeforces 834D The Bakery 【线段树优化DP】*
Codeforces 834D The Bakery LINK 题目大意是给你一个长度为n的序列分成k段,每一段的贡献是这一段中不同的数的个数,求最大贡献 是第一次做线段树维护DP值的题 感觉还可以, ...
随机推荐
- java反射的使用场合和作用、及其优缺点
1)使用场合 在编译时根本无法知道该对象或类可能属于哪些类,程序只依靠运行时信息来发现该对象和类的真实信息. 2)主要作用 通过反射可以使程序代码访问装载到JVM 中的类的内部信息,获取已装载类的属性 ...
- flutter进行自动编译操作步骤
环境: mac os 操作系统 xcode最新版本 10.2.1 flutter进行编译报错解决方案: (null): warning: (armv7) /Users/tommy/Desktop/Pr ...
- mac上安装mamp集成环境
深知mac配置环境是个坑,本人之前用的是xampp因为近期需要mongodb扩展,死活装不明白,索性就换了一个集成环境,在网上找了好多,最后选择了mamp 因为正版的要收费,所以在下载了N个以后终于找 ...
- js获取地址栏的参数
//获取url参数 window.getParam = function(url, id) { url = url+ ""; var regstr = "/(\\?|\\ ...
- Dart编程实例 - 类型测试操作符 is!
Dart编程实例 - 类型测试操作符 is! void main() { double n = 2.20; var num = n is! int; print(num); } 本文转自:http:/ ...
- Comet OJ - Contest #11 E ffort(组合计数+多项式快速幂)
传送门. 题解: 考虑若最后的总伤害数是s,那么就挡板分配一下,方案数是\(C_{s-1}^{n-1}\). 那么问题在于总伤害数很大,不能一个一个的算. \(C_{s-1}^{n-1}\)的OGF是 ...
- 阿里云智能推荐AIRec产品介绍
一.智能推荐(AIRec)简介 AIRec背景介绍 智能推荐(简称AIRec)基于阿里巴巴集团领先的大数据和人工智能技术,结合阿里巴巴在电商.内容.新闻.视频直播和社交等多个行业领域的积累,为全球企业 ...
- 【Dart学习】-- Dart之泛型
一,概述 Dart是一种可选的类型语言.Dart中的集合默认是异构的.换句话说,单个Dart集合可以托管各种类型的值.但是,可以使Dart集合保持同质值.泛型的概念可以用来实现同样的目的. 泛型的使 ...
- hive UDAF开发和运行全过程
介绍 hive的用户自定义聚合函数(UDAF)是一个很好的功能,集成了先进的数据处理.hive有两种UDAF:简单和通用.顾名思义,简单的UDAF,写的相当简单的,但因为使用Java反射导致性能损失, ...
- Visual Studio 2012常用快捷键总结
合理使用快捷键可以提高开发效率.收集整理一些常用的快捷键以方便查看使用 1.回到上一个光标位置/前进到下一个光标位置 1)回到上一个光标位置:使用组合键"Ctrl + -": 2) ...