题解 bzoj1954【Pku3764 The xor – longest Path】
做该题之前,至少要先会做这道题。
记 \(d[u]\) 表示 \(1\) 到 \(u\) 简单路径的异或和,该数组可以通过一次遍历求得。
\(~\)
考虑 \(u\) 到 \(v\) 简单路径的异或和该怎么求?
令 \(z=\operatorname{lca}(u,v)\) ,则 \(u\) 到 \(v\) 简单路径的异或和可以分成两段求解:一段是 \(z\) 到 \(u\) 简单路径的异或和,一段是 \(z\) 到 \(v\) 简单路径的异或和,二者异或一下即为 \(u\) 到 \(v\) 简单路径的异或和。
由于异或 "\(a \operatorname{xor} a=0\)" 的性质,两条路径重叠的部分异或起来即为 \(0\),可得
\(z\) 到 \(v\) 简单路径的异或和为
\]
\(z\) 到 \(v\) 简单路径的异或和为
\]
进一步,可得
\(u\) 到 \(v\) 简单路径的异或和为
\]
由于异或满足交换律,可化简为
\]
由上述性质,答案即为 \(\max\limits_{1\leq i<j\leq n}\)\(\{d[i] \operatorname{xor} d[j]\}\),又回到了这道题,字典树直接解决即可。
时间复杂度 \(\theta(32n)\) 。
CODE
#include<cstdio>
#include<algorithm>
#include<queue>
#define RI register int
using namespace std;
inline int read()
{
int x=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-f;s=getchar();}
while(s>='0'&&s<='9'){x=x*10-'0'+s;s=getchar();}
return x*f;
}
const int N=100100,M=200100;
int n;
int tot_E,head[N],ver[M],edge[M],Next[M];
void add(int u,int v,int w)
{
ver[++tot_E]=v; edge[tot_E]=w; Next[tot_E]=head[u]; head[u]=tot_E;
}
int d[N];
int vis[N];
void bfs()
{
queue<int>q;
q.push(1);vis[1]=1;
while(q.size())
{
int u=q.front();q.pop();
for(RI i=head[u];i;i=Next[i])
{
int v=ver[i],w=edge[i];
if(vis[v])continue;
vis[v]=1;
d[v]=d[u]^w;
q.push(v);
}
}
}
int trie[N*32+10][2],tot=1;
int ans;
void insert(int num)
{
int p=1;
for(RI k=31;k>=0;k--)
{
int ch=num>>k&1;
if(trie[p][ch]==0)trie[p][ch]=++tot;
p=trie[p][ch];
}
}
int search(int num)
{
int p=1,sum=0;
for(RI k=31;k>=0;k--)
{
int ch=num>>k&1;
if(trie[p][ch^1])p=trie[p][ch^1],sum+=1<<k;
else p=trie[p][ch];
if(p==0)return sum;
}
return sum;
}
int main()
{
scanf("%d",&n);
for(RI i=1;i<n;i++)
{
int u=read(),v=read(),w=read();
add(u,v,w),add(v,u,w);
}
bfs();
for(RI i=1;i<=n;i++)
{
ans=max(ans,search(d[i]));
insert(d[i]);
}
printf("%d\n",ans);
return 0;
}
thanks for watching
题解 bzoj1954【Pku3764 The xor – longest Path】的更多相关文章
- poj3764 The XOR Longest Path【dfs】【Trie树】
The xor-longest Path Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10038 Accepted: ...
- Solve Longest Path Problem in linear time
We know that the longest path problem for general case belongs to the NP-hard category, so there is ...
- Why longest path problem doesn't have optimal substructure?
We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...
- BZOJ1954: Pku3764 The xor-longest Path
题解: 在树上i到j的异或和可以直接转化为i到根的异或和^j到根的异或和. 所以我们把每个点到根的异或和处理出来放到trie里面,再把每个点放进去跑一遍即可. 代码: #include<cstd ...
- [LeetCode]题解(python):113 Path Sum II
题目来源 https://leetcode.com/problems/path-sum-ii/ Given a binary tree and a sum, find all root-to-leaf ...
- [LeetCode]题解(python):112 Path Sum
题目来源 https://leetcode.com/problems/path-sum/ Given a binary tree and a sum, determine if the tree ha ...
- [LeetCode]题解(python):064-Minimum Path Sum
题目来源 https://leetcode.com/problems/minimum-path-sum/ Given a m x n grid filled with non-negative num ...
- [LeetCode]题解(python):063-Unique path II
题目来源 https://leetcode.com/problems/unique-paths-ii/ Follow up for "Unique Paths": Now cons ...
- [LeetCode]题解(python):071-Simplify Path
题目来源: https://leetcode.com/problems/simplify-path/ 题意分析: 简化Unix上的绝对路径,也就是多个'/'代表一个,'..'表示返回上一级目录,‘.' ...
随机推荐
- mysql索引创建和使用细节
最近困扰自己很久的膝盖积液手术终于做完,在家养伤,逛技术博客看到easyswoole开发组成员仙士可博客有关mysql索引方面的知识,自己打算重温下. 正常业务起步数据表数据量较少,不用考虑使用索引, ...
- 使用C#交互快速生成代码!
#r "System.Reflection" #r "D:\xk.erp\OP.Model\bin\Debug\OP.Model.dll" using Syst ...
- ReactNative: 自定义ReactNative API组件
一.简介 在前面介绍了很多ReactNative中UI组件和API组件,这些都是Facebook团队封装好的基础组件,开发者可以直接使用.然而,在实际的开发过程中,面对复杂的需求,此时原生的Nativ ...
- 获取各类前几名数据的MYSQL写法
前几天,某在培训的朋友问我一个问题:查询每门功课成绩最好的前两名该怎么写. 这个问题虽然听起来挺简单,但是很有意思,于是我就新建了一张如下的表: stuNo为学号,stuScore为分数,course ...
- [bzoj4571] [loj#2016] [Scoi2016] 美味
Description 一家餐厅有 \(n\) 道菜,编号 \(1\)...\(n\) ,大家对第 \(i\) 道菜的评价值为 \(ai\)( \(1 \leq i \leq n\) ).有 \(m\ ...
- react元素获取e时,点击target为空的现象
今天呢,学习react过程中,我要获取一个元素的e, checkAll=(e)=>{ console.log(e) console.log(e.target) } render() { retu ...
- NOI2019滚粗记
Day -15 期末考完了,爆炸爆炸,就连数学和物理都错了好多傻*错误QwQ 哎呀管他的,NOI我来了! 跑到广附集训来了23333 Day -14 -- -2 做题,听题,哇和一群队爷在一个教室,真 ...
- 分布式缓存Redis的持久化方式RDB和AOF
一.前言 Redis支持两种方式的持久化,RDB和AOF.RDB会根据指定的规则“定时”将内存中的数据存储到硬盘上,AOF会在每次执行命令后将命令本身记录下来.两种持久化方式可以单独使用其中一种,但更 ...
- 单独立使用Django ORM
一.常用的ORM框架简介 在Python下的ORM库不少,同样介绍类似的博文也不少,但是是我非常规的用法,顺便做做笔记.这里参考Python 常用的ORM框架简介文章列出几个, 这个几个我都使用过,但 ...
- redis缓存数据库及Python操作redis
缓存数据库介绍 NoSQL(NoSQL = Not Only SQL ),意即“不仅仅是SQL”,泛指非关系型的数据库,随着互联网web2.0网站的兴起,传统的关系数据库在应付web2.0网站, 特 ...