题解 bzoj1954【Pku3764 The xor – longest Path】
做该题之前,至少要先会做这道题。
记 \(d[u]\) 表示 \(1\) 到 \(u\) 简单路径的异或和,该数组可以通过一次遍历求得。
\(~\)
考虑 \(u\) 到 \(v\) 简单路径的异或和该怎么求?
令 \(z=\operatorname{lca}(u,v)\) ,则 \(u\) 到 \(v\) 简单路径的异或和可以分成两段求解:一段是 \(z\) 到 \(u\) 简单路径的异或和,一段是 \(z\) 到 \(v\) 简单路径的异或和,二者异或一下即为 \(u\) 到 \(v\) 简单路径的异或和。
由于异或 "\(a \operatorname{xor} a=0\)" 的性质,两条路径重叠的部分异或起来即为 \(0\),可得
\(z\) 到 \(v\) 简单路径的异或和为
\]
\(z\) 到 \(v\) 简单路径的异或和为
\]
进一步,可得
\(u\) 到 \(v\) 简单路径的异或和为
\]
由于异或满足交换律,可化简为
\]
由上述性质,答案即为 \(\max\limits_{1\leq i<j\leq n}\)\(\{d[i] \operatorname{xor} d[j]\}\),又回到了这道题,字典树直接解决即可。
时间复杂度 \(\theta(32n)\) 。
CODE
#include<cstdio>
#include<algorithm>
#include<queue>
#define RI register int
using namespace std;
inline int read()
{
int x=0,f=1;char s=getchar();
while(s<'0'||s>'9'){if(s=='-')f=-f;s=getchar();}
while(s>='0'&&s<='9'){x=x*10-'0'+s;s=getchar();}
return x*f;
}
const int N=100100,M=200100;
int n;
int tot_E,head[N],ver[M],edge[M],Next[M];
void add(int u,int v,int w)
{
ver[++tot_E]=v; edge[tot_E]=w; Next[tot_E]=head[u]; head[u]=tot_E;
}
int d[N];
int vis[N];
void bfs()
{
queue<int>q;
q.push(1);vis[1]=1;
while(q.size())
{
int u=q.front();q.pop();
for(RI i=head[u];i;i=Next[i])
{
int v=ver[i],w=edge[i];
if(vis[v])continue;
vis[v]=1;
d[v]=d[u]^w;
q.push(v);
}
}
}
int trie[N*32+10][2],tot=1;
int ans;
void insert(int num)
{
int p=1;
for(RI k=31;k>=0;k--)
{
int ch=num>>k&1;
if(trie[p][ch]==0)trie[p][ch]=++tot;
p=trie[p][ch];
}
}
int search(int num)
{
int p=1,sum=0;
for(RI k=31;k>=0;k--)
{
int ch=num>>k&1;
if(trie[p][ch^1])p=trie[p][ch^1],sum+=1<<k;
else p=trie[p][ch];
if(p==0)return sum;
}
return sum;
}
int main()
{
scanf("%d",&n);
for(RI i=1;i<n;i++)
{
int u=read(),v=read(),w=read();
add(u,v,w),add(v,u,w);
}
bfs();
for(RI i=1;i<=n;i++)
{
ans=max(ans,search(d[i]));
insert(d[i]);
}
printf("%d\n",ans);
return 0;
}
thanks for watching
题解 bzoj1954【Pku3764 The xor – longest Path】的更多相关文章
- poj3764 The XOR Longest Path【dfs】【Trie树】
The xor-longest Path Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10038 Accepted: ...
- Solve Longest Path Problem in linear time
We know that the longest path problem for general case belongs to the NP-hard category, so there is ...
- Why longest path problem doesn't have optimal substructure?
We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...
- BZOJ1954: Pku3764 The xor-longest Path
题解: 在树上i到j的异或和可以直接转化为i到根的异或和^j到根的异或和. 所以我们把每个点到根的异或和处理出来放到trie里面,再把每个点放进去跑一遍即可. 代码: #include<cstd ...
- [LeetCode]题解(python):113 Path Sum II
题目来源 https://leetcode.com/problems/path-sum-ii/ Given a binary tree and a sum, find all root-to-leaf ...
- [LeetCode]题解(python):112 Path Sum
题目来源 https://leetcode.com/problems/path-sum/ Given a binary tree and a sum, determine if the tree ha ...
- [LeetCode]题解(python):064-Minimum Path Sum
题目来源 https://leetcode.com/problems/minimum-path-sum/ Given a m x n grid filled with non-negative num ...
- [LeetCode]题解(python):063-Unique path II
题目来源 https://leetcode.com/problems/unique-paths-ii/ Follow up for "Unique Paths": Now cons ...
- [LeetCode]题解(python):071-Simplify Path
题目来源: https://leetcode.com/problems/simplify-path/ 题意分析: 简化Unix上的绝对路径,也就是多个'/'代表一个,'..'表示返回上一级目录,‘.' ...
随机推荐
- JAVA读取yml配置文件指定key下的所有内容
先引入需要的依赖 <!--读取yml文件--> <dependency> <groupId>org.yaml</groupId> <artifac ...
- echart两组柱状图对比时,不同类型根据各类型的最大值为基准进行展示
项目中遇到的问题:因为数据太小,箭头的地方展示不出来,这时的两组对比数据是根据一个最大值为基准进行渲染的.但我们想实现不同类型的对比根据不同的基准值渲染. 理想效果如下图: 实现代码: option ...
- 1、使用 as 而不要用 is
public class ShouldAsNotIs { public void ShouldAs() { object a = new ShouldAsNotIs(); var b = a as S ...
- ubuntu pycharm、idea创建快捷方式
编辑/usr/share/application/pycharm.desktop [Desktop Entry] Type=Application Name=Pycharm GenericName=P ...
- Elasticsearch系列---搜索执行过程及scroll游标查询
概要 本篇主要介绍一下分布式环境中搜索的两阶段执行过程. 两阶段搜索过程 回顾我们之前的CRUD操作,因为只对单个文档进行处理,文档的唯一性很容易确定,并且很容易知道是此文档在哪个node,哪个sha ...
- sg函数的变形 - 可以将一堆石子分开
Nim is a two-player mathematic game of strategy in which players take turns removing objects from di ...
- Vs中提交了代码但是不想推送到Git中
1:首先就是我fix code 是要提交上去的,所以我就开始提交呢,但是,一看提交后,还没有推送到git就是现在下面的这个状态 上面这个是==> 这是先新增的文件,第一步.但是第一步就差推送了, ...
- 史上最简单的vi教程,10分钟包教会
从第一次接触vi/vim到现在已经十几年了,在这个过程中,来来回回,反反复复,学习vi很多次了. 虽然关于vi的使用,我还远未达到"专家"的水平,但对于vi的使用,我有话说. 1. ...
- 02.flask-script
网址:https://pypi.org/project/Flask-Script/ 文档:https://flask-script.readthedocs.io/en/latest/ 1.安装 2.新 ...
- 在winform中使用cefsharp.winform嵌入浏览器(含视频教程)
免费视频教程和源码: https://www.bilibili.com/video/av84573813/ 1. 开始使用CefSharp在Winform中嵌入网页 2. 解决重复打开Cefsharp ...