SLS机器学习最佳实战:日志聚类+异常告警
1.手中的锤子都有啥?
围绕日志,挖掘其中更大价值,一直是我们团队所关注。在原有日志实时查询基础上,今年SLS在DevOps领域完善了如下功能:
- 上下文查询
- 实时Tail和智能聚类,以提高问题调查效率
- 提供多种时序数据的异常检测和预测函数,来做更智能的检查和预测
- 数据分析的结果可视化
- 强大的告警设置和通知,通过调用webhook进行关联行动

今天我们重点介绍下,日志只能聚类和异常告警如何配合,更好的进行异常发现和告警
2.平台实验
2.1 实验数据
一份Sys Log的原始数据,,并且开启了日志聚类服务,具体的状态截图如下:

通过调整下面截图中红色框1的大小,可以改变图中红色框2的结果,但是对于每个最细粒度的pattern并不会改变,也就是说:子Pattern的结果是稳定且唯一的,我们可以通过子Pattern的Signature找到对应的原始日志条目。

2.2 生成子模式的时序信息
假设,我们对这个子Pattern要进行监控:
msg:vm-111932.tc su: pam_unix(*:session): session closed for user root
对应的 signature_id : log_signature: 1814836459146662485
我们得到了上述pattern对应的原始日志,可以看下具体的数量在时间轴上的直返图:

上图中,我们可以发现,这个模式的日志分布不是很均衡,其中还有一些是没有的,如果直接按照时间窗口统计数量,得到的时序图如下:
__log_signature__: 1814836459146662485 |
select
date_trunc('minute', __time__) as time,
COUNT(*) as num
from log GROUP BY time order by time ASC limit 10000

上述图中我们发现时间上并不是连续的。因此,我们需要对这条时序进行补点操作。
__log_signature__: 1814836459146662485 |
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC limit 10000

2.3 对时序进行异常检测
使用时序异常检测函数: ts_predicate_arma
__log_signature__: 1814836459146662485 |
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg')
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC ) limit 10000

2.4 告警该如何设置
- 将机器学习函数的结果拆解开
__log_signature__: 1814836459146662485 |
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1)

- 针对最近两分钟的结果进行告警
__log_signature__: 1814836459146662485 |
select
unixtime, src, pred, up, lower, prob
from (
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time, COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1) )
where is_nan(src) = false order by unixtime desc limit 2

- 针对上升点进行告警,并设置兜底策略
__log_signature__: 1814836459146662485 |
select
sum(prob) as sumProb, max(src) as srcMax, max(up) as upMax
from (
select
unixtime, src, pred, up, lower, prob
from (
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num
from (
select
__time__ - __time__ % 60 as time, COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1) )
where is_nan(src) = false order by unixtime desc limit 2 )

具体的告警设置如下:

3.硬广时间
3.1 日志进阶
这里是日志服务的各种功能的演示 日志服务整体介绍,各种Demo

更多日志进阶内容可以参考:日志服务学习路径。
本文作者:悟冥
本文为云栖社区原创内容,未经允许不得转载。
SLS机器学习最佳实战:日志聚类+异常告警的更多相关文章
- 【机器学习PAI实战】—— 玩转人工智能之综述
摘要: 基于人工智能火热的大背景下,通过阿里云的机器学习平台PAI在真实场景中的应用,详细阐述相关算法及使用方法,力求能够让读者读后能够马上动手利用PAI搭建属于自己的机器学习实用方案,真正利用PAI ...
- 【机器学习PAI实战】—— 玩转人工智能之你最喜欢哪个男生?
摘要: 分类问题是生活中最常遇到的问题之一.普通人在做出选择之前,可能会犹豫不决,但对机器而言,则是唯一必选的问题.我们可以通过算法生成模型去帮助我们快速的做出选择,而且保证误差最小.充足的样本,合适 ...
- 最佳实战Docker持续集成图文详解
最佳实战Docker持续集成图文详解 这是一种真正的容器级的实现,这个带来的好处,不仅仅是效率的提升,更是一种变革:开发人员第一次真正为自己的代码负责——终于可以跳过运维和测试部门,自主维护运行环境( ...
- 第24月第30天 scrapy《TensorFlow机器学习项目实战》项目记录
1.Scrapy https://www.imooc.com/learn/1017 https://github.com/pythonsite/spider/tree/master/jobboleSp ...
- Atitit mysql 存储过程捕获所有异常,以及日志记录异常信息
Atitit mysql 存储过程捕获所有异常,以及日志记录异常信息 1.1. 异常的处理模式exit continue undo模式 1 1.2. 捕获所有异常使用 DECLARE ...
- python日志和异常
“日志”转载:http://www.cnblogs.com/dkblog/archive/2011/08/26/2155018.html "异常"转载:http://www.cnb ...
- k8s pod的4种网络模式最佳实战(externalIPs )
[k8s]k8s pod的4种网络模式最佳实战(externalIPs ) hostPort相当于docker run -p 8081:8080,不用创建svc,因此端口只在容器运行的vm ...
- [svc]NFS存储企业场景及nfs最佳实战探究
办公网络里人一般系统用共享,尤其是财务, 他们喜欢直接点开编辑. 而不喜欢ftp nfs在网站架构中的用途 注: 如果pv量少,则放在一台机器上速度更快,如果几千万pv,则存储分布式部署. 网站架构中 ...
- vue2 入门 教程 单页应用最佳实战[*****]
推荐 vue2 入门 教程 -------- 看过其他的,再看作者的,很赞 vue2 入门 教程 单页应用最佳实战 : 具体在 https://github.com/MeCKodo/vue-tuto ...
随机推荐
- 使用Jedis操作Redis-使用Java语言在客户端操作---hash类型
我们可以将Redis中的Hashes类型看成具有String Key和String Value的map容器. 所以该类型非常适合于存储值对象的信息.如Username.P ...
- redis 原生操作 & python操作redis
一.基本介绍 1.简介 Redis是由意大利人Salvatore Sanfilippo(网名:antirez)开发的一款内存高速缓存数据库.Redis全称为:Remote Dictionary Ser ...
- 多机MySQL一主双从详细安装主从复制
多机MySQL一主双从详细安装 一.复制的工作原理 要想实现AB复制,那么前提是master上必须要开启二进制日志 1.首先master将数据更新记录到二进制日志文件 2.从slave start开始 ...
- springmvc 使用了登录拦截器之后静态资源还是会被拦截的处理办法
解决办法 在拦截器的配置里加上静态资源的处理 参考https://www.jb51.net/article/103704.htm
- 学习Python笔记---列表简介
列表: 列表由一系列按特定顺序排列的元素组成.你可以创建包涵字母表中所有字母.数字0-9或所有家庭成员姓名的列表:也可以将任何东西加入列表中,其中的元素之间可以没有任何关系. 列表 在Python中, ...
- Swift 和 Objective-C 混编后对ipa包大小的影响
https://my.oschina.net/ilrrong/blog/800923 最近用Swift对以前写的一个应用进行重写,使用了Swift和Objective-C的混编,提交审核后发现比以前大 ...
- 定时任务 $ ls /etc/cron* + cat$ for user in $(cat /etc/passwd | cut -f1 -d:); do crontab -l -u $user; done
是否有某个定时任务运行过于频繁? 是否有些用户提交了隐藏的定时任务? 在出现故障的时候,是否正好有某个备份任务在执行?
- phpstorm服务器配置
转载自百度经验https://jingyan.baidu.com/article/84b4f565ea229960f6da320c.html 这个教程里面后面修改的两步目前没有用到,之后可能会用到,暂 ...
- webpack学习之——模块(Modules)
在模块化编程中,开发者将程序分解成离散功能块(discrete chunks of functionality),并称之为模块. 每个模块具有比完整程序更小的接触面,使得校验.调试.测试轻而易举. 精 ...
- php收集表单数据-$GET和$POST的区别
学习笔记: $_GET 变量 预定义的 $_GET 变量用于收集来自 method="get" 的表单中的值. 从带有 GET 方法的表单发送的信息(例如:http://www.r ...