1.手中的锤子都有啥?

围绕日志,挖掘其中更大价值,一直是我们团队所关注。在原有日志实时查询基础上,今年SLS在DevOps领域完善了如下功能:

  • 上下文查询
  • 实时Tail和智能聚类,以提高问题调查效率
  • 提供多种时序数据的异常检测和预测函数,来做更智能的检查和预测
  • 数据分析的结果可视化
  • 强大的告警设置和通知,通过调用webhook进行关联行动

今天我们重点介绍下,日志只能聚类和异常告警如何配合,更好的进行异常发现和告警

2.平台实验

2.1 实验数据

一份Sys Log的原始数据,,并且开启了日志聚类服务,具体的状态截图如下:

通过调整下面截图中红色框1的大小,可以改变图中红色框2的结果,但是对于每个最细粒度的pattern并不会改变,也就是说:子Pattern的结果是稳定且唯一的,我们可以通过子Pattern的Signature找到对应的原始日志条目。

2.2 生成子模式的时序信息

假设,我们对这个子Pattern要进行监控:

msg:vm-111932.tc su: pam_unix(*:session): session closed for user root
对应的 signature_id : log_signature: 1814836459146662485

我们得到了上述pattern对应的原始日志,可以看下具体的数量在时间轴上的直返图:

上图中,我们可以发现,这个模式的日志分布不是很均衡,其中还有一些是没有的,如果直接按照时间窗口统计数量,得到的时序图如下:

__log_signature__: 1814836459146662485 |
select
date_trunc('minute', __time__) as time,
COUNT(*) as num
from log GROUP BY time order by time ASC limit 10000

上述图中我们发现时间上并不是连续的。因此,我们需要对这条时序进行补点操作。

__log_signature__: 1814836459146662485 |
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC limit 10000

2.3 对时序进行异常检测

使用时序异常检测函数: ts_predicate_arma

__log_signature__: 1814836459146662485 |
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg')
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC ) limit 10000

2.4 告警该如何设置

  • 将机器学习函数的结果拆解开
__log_signature__: 1814836459146662485 |
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time,
COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1)

  • 针对最近两分钟的结果进行告警
__log_signature__: 1814836459146662485 |
select
unixtime, src, pred, up, lower, prob
from (
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time,
avg(num) as num
from (
select
__time__ - __time__ % 60 as time, COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1) )
where is_nan(src) = false order by unixtime desc limit 2

  • 针对上升点进行告警,并设置兜底策略
__log_signature__: 1814836459146662485 |
select
sum(prob) as sumProb, max(src) as srcMax, max(up) as upMax
from (
select
unixtime, src, pred, up, lower, prob
from (
select
t1[1] as unixtime, t1[2] as src, t1[3] as pred, t1[4] as up, t1[5] as lower, t1[6] as prob
from (
select
ts_predicate_arma(to_unixtime(time), num, 5, 1, 1, 1, 'avg') as res
from (
select
time_series(time, '1m', '%Y-%m-%d %H:%i:%s', '0') as time, avg(num) as num
from (
select
__time__ - __time__ % 60 as time, COUNT(*) as num
from log GROUP BY time order by time desc )
GROUP by time order by time ASC )) , unnest(res) as t(t1) )
where is_nan(src) = false order by unixtime desc limit 2 )

具体的告警设置如下:

3.硬广时间

3.1 日志进阶

这里是日志服务的各种功能的演示 日志服务整体介绍,各种Demo

更多日志进阶内容可以参考:日志服务学习路径


本文作者:悟冥

原文链接

本文为云栖社区原创内容,未经允许不得转载。

SLS机器学习最佳实战:日志聚类+异常告警的更多相关文章

  1. 【机器学习PAI实战】—— 玩转人工智能之综述

    摘要: 基于人工智能火热的大背景下,通过阿里云的机器学习平台PAI在真实场景中的应用,详细阐述相关算法及使用方法,力求能够让读者读后能够马上动手利用PAI搭建属于自己的机器学习实用方案,真正利用PAI ...

  2. 【机器学习PAI实战】—— 玩转人工智能之你最喜欢哪个男生?

    摘要: 分类问题是生活中最常遇到的问题之一.普通人在做出选择之前,可能会犹豫不决,但对机器而言,则是唯一必选的问题.我们可以通过算法生成模型去帮助我们快速的做出选择,而且保证误差最小.充足的样本,合适 ...

  3. 最佳实战Docker持续集成图文详解

    最佳实战Docker持续集成图文详解 这是一种真正的容器级的实现,这个带来的好处,不仅仅是效率的提升,更是一种变革:开发人员第一次真正为自己的代码负责——终于可以跳过运维和测试部门,自主维护运行环境( ...

  4. 第24月第30天 scrapy《TensorFlow机器学习项目实战》项目记录

    1.Scrapy https://www.imooc.com/learn/1017 https://github.com/pythonsite/spider/tree/master/jobboleSp ...

  5. Atitit mysql 存储过程捕获所有异常,以及日志记录异常信息

    Atitit mysql 存储过程捕获所有异常,以及日志记录异常信息 1.1. 异常的处理模式exit  continue undo模式 1 1.2. 捕获所有异常使用        DECLARE ...

  6. python日志和异常

    “日志”转载:http://www.cnblogs.com/dkblog/archive/2011/08/26/2155018.html "异常"转载:http://www.cnb ...

  7. k8s pod的4种网络模式最佳实战(externalIPs )

    [k8s]k8s pod的4种网络模式最佳实战(externalIPs )       hostPort相当于docker run -p 8081:8080,不用创建svc,因此端口只在容器运行的vm ...

  8. [svc]NFS存储企业场景及nfs最佳实战探究

    办公网络里人一般系统用共享,尤其是财务, 他们喜欢直接点开编辑. 而不喜欢ftp nfs在网站架构中的用途 注: 如果pv量少,则放在一台机器上速度更快,如果几千万pv,则存储分布式部署. 网站架构中 ...

  9. vue2 入门 教程 单页应用最佳实战[*****]

    推荐 vue2 入门 教程 -------- 看过其他的,再看作者的,很赞 vue2 入门 教程 单页应用最佳实战 :  具体在 https://github.com/MeCKodo/vue-tuto ...

随机推荐

  1. jnhs中国省市县区mysql数据表不带gps坐标

    1.查省 SELECT * FROM china WHERE china.Pid=0 2.查市 SELECT * FROM chinaWHERE china.Pid=330000 3.查区 SELEC ...

  2. ucore os 前初始化

    BIOS 初始化完成说起 连接的时候指定了 -Ttext 0x7c00 也指定了 -e start 所以booasm.S 中的start 就呗钦定为程序入口了. 开始就是 屏蔽中断 初始化段寄存器 使 ...

  3. 区间加值,区间gcd, 牛客949H

    牛客小白月赛16H 小阳的贝壳 题目链接 题意 维护一个数组,支持以下操作: 1: 区间加值 2: 询问区间相邻数差的绝对值的最大值 3: 询问区间gcd 题解 设原数组为\(a\), 用线段树维护\ ...

  4. PHP--反射的方法

    反射,直观理解就是根据到达地找到出发地和来源.比如,一个光秃秃的对象,我们可以仅仅通过这个对象就能知道它所属的类.拥有哪些方法. 反射是指�php运行状态中,扩展分析PHP程序,导出或提出关于类.方法 ...

  5. Android学习笔记之mainfest文件中android属性

    android:allowTaskReparenting 是否允许activity更换从属的任务,比如从短信息任务 切换到浏览器任务. -------------------------------- ...

  6. JS---案例:开机动画

    案例:开机动画 由上下两部分组成,先下面的高变为0 ,再最大的div宽为0,形成一个缩小到没有的动画效果 点击的X是在背景图上的,在上面设置了一个空的span用于注册点击事件 <!DOCTYPE ...

  7. 解决listview点击item失效

    开发中很常见的一个问题,项目中的listview不仅仅是简单的文字,常常需要自己定义listview,自己的Adapter去继承BaseAdapter,在adapter中按照需求进行编写,问题就出现了 ...

  8. C# 通过URL得到图片的问题

    第一个方法在读取某些图片会报错 public static Image get_Fill_image(string url) { var image = new Image(); image.Sour ...

  9. GDOI模拟4.11~4.13总结

    总体情况 省选前的第一场模拟,就连续三天垫底滚粗了. 三天下来,只做了第一天的签到题,然后再做了一些水题的暴力,还不得分. 三天分数:100/400+40/400+90/400=230/1200,得了 ...

  10. mysql的三种连接方式

    SQL的三种连接方式分为:左外连接.右外连接.内连接,专业术语分别为:LEFT JOIN.RIGHT JOING.INNER JOIN 内连接INNER JOIN:使用比较运算符来根据指定的连接的每个 ...