A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

  • The left subtree of a node contains only nodes with keys less than the node's key.
  • The right subtree of a node contains only nodes with keys greater than or equal to the node's key.
  • Both the left and right subtrees must also be binary search trees.

A Complete Binary Tree (CBT) is a tree that is completely filled, with the possible exception of the bottom level, which is filled from left to right.

Now given a sequence of distinct non-negative integer keys, a unique BST can be constructed if it is required that the tree must also be a CBT. You are supposed to output the level order traversal sequence of this BST.

Input Specification:

Each input file contains one test case. For each case, the first line contains a positive integer N (≤). Then N distinct non-negative integer keys are given in the next line. All the numbers in a line are separated by a space and are no greater than 2000.

Output Specification:

For each test case, print in one line the level order traversal sequence of the corresponding complete binary search tree. All the numbers in a line must be separated by a space, and there must be no extra space at the end of the line.

Sample Input:

10
1 2 3 4 5 6 7 8 9 0

Sample Output:

6 3 8 1 5 7 9 0 2 4

通过观察可以注意到,对完全二叉树当中的任何一个结点(设编号为x),其左孩子的编号一定是2x,而右孩子的编号一定是2x + 1。也就是说,完全二叉树可以通过建立一个大小为2k的数组来存放所有结点的信息,其中k为完全二叉树的最大高度,且1号位存放的必须是根结点(想一想为什么根结点不能存在下标为0处?)。这样就可以用数组的下标来表图95完全二又树编号示意示结点编号,且左孩子和右孩子的编号都可以直接计算得到。
事实上,如果不是完全二叉树,也可以视其为完全二叉树,即把空结点也进行实际的编号工作。但是这样做会使整棵树是一条链时的空间消耗巨大(对k个结点就需要大小为2k的数组),因此很少采用这种方法来存放一般性质的树。不过如果题目中已经规定是完全二叉树,那么数组大小只需要设为结点上限个数加1即可,这将会大大节省编码复杂度。
除此之外,该数组中元素存放的顺序恰好为该完全二叉树的层序遍历序列。而判断某个结点是否为叶结点的标志为:该结点(记下标为root)的左子结点的编号root * 2大于结点总个数n(想一想为什么不需要判断右子结点?);判断某个结点是否为空结点的标志为:该结点下标 root大于结点总个数n。

 #include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
int N, nums[], res[], index = ;
void levelOrder(int k)
{
if (k > N)//叶子节点
return;
levelOrder(k * );//遍历左子树
res[k] = nums[index++];//即遍历完左子树后,此时即为根节点
levelOrder(k * + );//遍历右子树
}
int main()
{
cin >> N;
for (int i = ; i < N; ++i)
cin >> nums[i];
sort(nums, nums + N, [](int a, int b) {return a < b; });
levelOrder();
for (int i = ; i <= N; ++i)
cout << res[i] << (i == N ? "" : " ");
return ;
}

PAT甲级——A1064 Complete Binary Search Tree的更多相关文章

  1. PAT 甲级 1064 Complete Binary Search Tree

    https://pintia.cn/problem-sets/994805342720868352/problems/994805407749357568 A Binary Search Tree ( ...

  2. pat 甲级 1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

  3. PAT 甲级 1064 Complete Binary Search Tree (30 分)(不会做,重点复习,模拟中序遍历)

    1064 Complete Binary Search Tree (30 分)   A Binary Search Tree (BST) is recursively defined as a bin ...

  4. pat 甲级 1064 ( Complete Binary Search Tree ) (数据结构)

    1064 Complete Binary Search Tree (30 分) A Binary Search Tree (BST) is recursively defined as a binar ...

  5. A1064. Complete Binary Search Tree

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following propertie ...

  6. PAT Advanced 1064 Complete Binary Search Tree (30) [⼆叉查找树BST]

    题目 A Binary Search Tree (BST) is recursively defined as a binary tree which has the following proper ...

  7. PAT_A1064#Complete Binary Search Tree

    Source: PAT A1064 Complete Binary Search Tree (30 分) Description: A Binary Search Tree (BST) is recu ...

  8. PAT甲级:1064 Complete Binary Search Tree (30分)

    PAT甲级:1064 Complete Binary Search Tree (30分) 题干 A Binary Search Tree (BST) is recursively defined as ...

  9. PAT题库-1064. Complete Binary Search Tree (30)

    1064. Complete Binary Search Tree (30) 时间限制 100 ms 内存限制 32000 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHE ...

随机推荐

  1. oxyplot 禁止拖动,缩放

      <oxy:Plot> IsZoomEnabled= IsPanEnabled=/> IsZoomEnabled= IsPanEnabled=/> 关键代码: IsZoomE ...

  2. private定义的static字段子其他类能通过"类名.字段名"调用吗?

    不能!

  3. iOS逆向系列-Reveal

    概述 Reveal是一款调试iOS程序UI界面的神器. 官网地址:https://revealall.com 下载:https://revealapp.com/download/ 建议下载Reveal ...

  4. linux系统使用小记

    1.解决Ubuntu不能正常使用vi的问题.sudo apt-get remove vim-common   sudo apt-get install vim 2.备份linux系统,注意,有的优盘单 ...

  5. PyTorch中的C++扩展

    今天要聊聊用 PyTorch 进行 C++ 扩展. 在正式开始前,我们需要了解 PyTorch 如何自定义module.这其中,最常见的就是在 python 中继承torch.nn.Module,用 ...

  6. [JZOJ5355] 【NOIP2017提高A组模拟9.9】保命

    题目 描述 题目已经足够清晰了,所以不再赘述题目大意. 思考历程 一眼看下去,好像是一道大水题! 然而,再看几眼,感觉又不是一道水题! 然后想了半天,感觉它特别难转移! 最终打了一个暴力,然后发现样例 ...

  7. 12DUILib经典教程(实例)

    Duilib经典实例教程:1基本框架:一个简单的Duilib程序一般是下面这个样子的:://Duilib使用设置部分:#pragmaonce:#defineWIN32_LEAN_AND_ME:#def ...

  8. BZOJ 2281 消失之物

    ftiasch 有 N 个物品, 体积分别是 W1, W2, -, WN. 由于她的疏忽, 第 i 个物品丢失了. "要使用剩下的 N – 1 物品装满容积为 x 的背包,有几种方法呢?&q ...

  9. vue-cli新手总结

    项目中需要用到vue-cli脚手架来搭建前端框架,对于vue小白,总结一下自己遇到的问题以及解决方案,还要学习的地方有很多. vue-cli安装下载网上有很多教程,但对于新手而言,有些地方需要自己摸索 ...

  10. Extjs4 desktop 图标自动换行,横纵排列 图标大小修改

    一.图标换行 /*! * Ext JS Library 4.0 * Copyright(c) 2006-2011 Sencha Inc. * licensing@sencha.com * http:/ ...