「JSOI2015」isomorphism
「JSOI2015」isomorphism
我们还是考虑树哈希来判同构。
但是我们需要使用一些特殊的手段来特殊对待假节点。
由于是无向树,我们首先求出重心,然后以重心为根跑树哈希。
此处我们不计算假节点的个数对子树大小的贡献。需要注意的是无向树可能有两个重心。
树哈希的时候,假节点儿子的哈希值也直接向上贡献(因为假节点有且只有一个儿子)。
这样我们就可以求出一颗无向树的简化树的哈希值,之后的问题就轻松解决了。
参考代码:
#include <algorithm>
#include <cstring>
#include <cstdio>
#include <vector>
#define rg register
#define file(x) freopen(x".in", "r", stdin), freopen(x".out", "w", stdout)
using namespace std;
template < class T > inline void read(T& s) {
s = 0; int f = 0; char c = getchar();
while ('0' > c || c > '9') f |= c == '-', c = getchar();
while ('0' <= c && c <= '9') s = s * 10 + c - 48, c = getchar();
s = f ? -s : s;
}
typedef unsigned long long ull;
const int _ = 1e4 + 5;
const ull base = 19491001;
int tot, head[_]; struct Edge { int v, nxt; } edge[_ << 1];
inline void Add_edge(int u, int v) { edge[++tot] = (Edge) { v, head[u] }, head[u] = tot; }
int m, s[_]; vector < ull > H[_];
int n, real, dgr[_], siz[_], mnx, mx[_]; ull h[_], pow[_], v[_];
inline void dfs1(int u, int f) {
siz[u] = dgr[u] != 2, mx[u] = 0;
for (rg int i = head[u]; i; i = edge[i].nxt) {
int v = edge[i].v; if (v == f) continue ;
dfs1(v, u), siz[u] += siz[v], mx[u] = max(mx[u], siz[v]);
}
mx[u] = max(mx[u], real - siz[u]), mnx = min(mnx, mx[u]);
}
inline void dfs2(int u, int f) {
for (rg int i = head[u]; i; i = edge[i].nxt)
if (edge[i].v != f) dfs2(edge[i].v, u);
int top = 0;
for (rg int i = head[u]; i; i = edge[i].nxt)
if (edge[i].v != f) v[top++] = h[edge[i].v];
sort(v, v + top), h[u] = top - 1;
for (rg int i = 0; i < top; ++i) h[u] += pow[i] * v[i];
}
vector < int > tmp;
inline bool cmp(const int& i, const int& j) { return s[i] < s[j]; }
inline bool check(int x) {
for (rg int i = 0; i < tmp.size(); ++i) {
int y = tmp[i];
for (rg int j = 0; j < H[x].size(); ++j)
for (rg int k = 0; k < H[y].size(); ++k)
if (H[x][j] == H[y][k]) return 0;
}
return 1;
}
int main() {
#ifndef ONLINE_JUDGE
file("cpp");
#endif
read(m), pow[0] = 1;
for (rg int i = 1; i < _; ++i) pow[i] = pow[i - 1] * base;
for (rg int o = 1; o <= m; ++o) {
read(n);
memset(head + 1, tot = 0, sizeof (int) * n);
memset(dgr + 1, 0, sizeof (int) * n);
for (rg int u, v, i = 1; i < n; ++i)
read(u), read(v), Add_edge(u, v), Add_edge(v, u), ++dgr[u], ++dgr[v];
real = 0;
for (rg int i = 1; i <= n; ++i) real += dgr[i] != 2;
mnx = 2e9, dfs1(1, 0);
s[o] = real, H[o].clear();
for (rg int i = 1; i <= n; ++i)
if (mx[i] == mnx) dfs2(i, 0), H[o].push_back(h[i]);
}
for (rg int i = 1; i <= m; ++i) if (check(i)) tmp.push_back(i);
sort(tmp.begin(), tmp.end(), cmp);
printf("%u\n", tmp.size());
for (rg int i = 0; i < tmp.size(); ++i) printf("%d ", s[tmp[i]]);
return 0;
}
「JSOI2015」isomorphism的更多相关文章
- 「JSOI2015」串分割
「JSOI2015」串分割 传送门 首先我们会有一个贪心的想法:分得越均匀越好,因为长的绝对比短的大. 那么对于最均匀的情况,也就是 \(k | n\) 的情况,我们肯定是通过枚举第一次分割的位置,然 ...
- 「JSOI2015」symmetry
「JSOI2015」symmetry 传送门 我们先考虑构造出原正方形经过 \(4\) 种轴对称变换以及 \(2\) 种旋转变换之后的正方形都构造出来,然后对所得的 \(7\) 个正方形都跑一遍二维哈 ...
- 「JSOI2015」地铁线路
「JSOI2015」地铁线路 传送门 第一问很简单:对于每条线路建一个点,然后所有该条线路覆盖的点向它连边,权值为 \(1\) ,然后它向所有线路上的点连边,权值为 \(0\) . 然后,跑一边最短路 ...
- 「JSOI2015」染色问题
「JSOI2015」染色问题 传送门 虽然不是第一反应,不过还是想到了要容斥. 题意转化:需要求满足 \(N + M + C\) 个条件的方案数. 然后我们就枚举三个数 \(i, j, k\) ,表示 ...
- 「JSOI2015」圈地
「JSOI2015」圈地 传送门 显然是最小割. 首先对于所有房子,权值 \(> 0\) 的连边 \(s \to i\) ,权值 \(< 0\) 的连边 \(i \to t\) ,然后对于 ...
- 「JSOI2015」最小表示
「JSOI2015」最小表示 传送门 很显然的一个结论:一条边 \(u \to v\) 能够被删去,当且仅当至少存在一条其它的路径从 \(u\) 通向 \(v\) . 所以我们就建出正反两张图,对每个 ...
- 「JSOI2015」套娃
「JSOI2015」套娃 传送门 考虑贪心. 首先我们假设所有的套娃都互相不套. 然后我们考虑合并两个套娃 \(i\),\(j\) 假设我们把 \(i\) 套到 \(j\) 里面去,那么就可以减少 \ ...
- 「JSOI2015」非诚勿扰
「JSOI2015」非诚勿扰 传送门 我们首先考虑一名女性选中她列表里第 \(x\) 名男性的概率(假设她列表里共有 \(s\) 名男性): \[ P = p \times (1 - p) ^ {x ...
- 「JSOI2015」salesman
「JSOI2015」salesman 传送门 显然我们为了使收益最大化就直接从子树中选大的就好了. 到达次数的限制就是限制了可以选的子树的数量,因为每次回溯上来都会减一次到达次数. 多种方案的判断就是 ...
随机推荐
- java基础之 java注释
JAVA里有2中注释风格. 一种以 "/*" 开始以 "*/" 结尾,另一种是以 "//" 起头的. 被注释的内容不会被java虚拟机编译, ...
- pandas模块详解
Pandas模块 1.什么是pandas pandas是基于numpy构建的,用来做数据分析的 2.pandas能干什么 具备对其功能的数据结构DataFrame,Series 集成时间序列功能 提供 ...
- jmeter下载安装---已有jmeter脚本使用方法
一.jmeter下载安装 1.下载地址:http://jmeter.apache.org/download_jmeter.cgi 下载下来为一个压缩包,解压即可 解压后目录结构如下: 2.jmeter ...
- CSS布局的四种定位方式
1.static(静态定位): 默认值.没有定位,元素出现在正常的流中(忽略 top, bottom, left, right 或者 z-index 声明).参考上篇随笔. 2.relative(相对 ...
- python解压压缩包的几种方式
这里讨论使用Python解压如下五种压缩文件: .gz .tar .tgz .zip .rar 简介 gz: 即gzip,通常只能压缩一个文件.与tar结合起来就可以实现先打包,再压缩. tar: ...
- vue里不同数据的循环,其中的数组对象
用产品的属性数据说明 页面里显示效果为:要把产品的属性显示到页面上,产品属性为后台自主上传产品的属性,产品的属性不同,所以需要把属性和属性值显示到页面上 产品属性数据为: properties: &q ...
- mysql之路4
MYSQL之约束 2.主键约束 349行cnname换成cname
- HTML的背景
HTML HTML(超文本标记语言),超文本包括:文字.图片.音频.视频.动画等. W3C(万维网联盟)标准包括: 结构化标准语言(HTML.XML) 1.1. HTML(超文本标记语言):用来显示数 ...
- Django_后台管理
1. 站点管理 2. 创建超级管理员 3. 添加自己的数据模型 默认是打印字符串的 4. 个性化站点管理的定制 4.1 个性化规则 admin.py 4.2 布尔值定制显示 4.3 插入班级的时候同时 ...
- Led Candle Light - Safe, Cost-Effective, Versatile, Realistic Flame Lighting
Candles have been used to remove light for centuries, but it took hundreds of years to make better c ...