题目描述

http://main.edu.pl/en/archive/oi/18/smi

The Byteotian Waste Management Company (BWMC) has drastically raised the price of garbage collection lately. This caused some of the citizens to stop paying for collecting their garbage and start disposing of it in the streets. Consequently, many streets of Byteburg are literally buried under litter.

The street system of Byteburg consists of intersections, some of which are directly connected with bidirectional streets. No two streets connect the same pair of intersections. Some of the streets are littered while others are not.

The mayor of Byteburg, Byteasar, has decided on an unprecedented action to persuade the citizens to pay for waste collection. Namely, he decided to clean only some of the streets - precisely those that the majority of people living on paid for garbage collection. The streets that the majority of people living on did not pay for waste collection, on the other hand, will thus remain littered - or if it is called for - will become littered by the garbage collected from other streets! Byteasar has already prepared a city map with the streets to be cleaned and to remain or become littered marked on. Unfortunately, the BWMC employees cannot comprehend his master plan. They are, however, quite capable of carrying out simple instructions.

A single such instruction consists in driving the garbage truck along a route that starts on an arbitrary intersection, goes along any streets of choice, and ending on the very same intersection that it started on. However, every intersection can be visited at most once on a single route, except for the one it starts and ends with-the garbage truck obviously appears twice on that one. The truck cleans a littered street it rides along, but on the other hand it dumps the waste on the clean streets along its route, making them littered.

Byteasar wonders if it is possible to execute his plan by issuing a number of aforementioned route instructions. Help him out by writing a program that determines a set of such routes or concludes that it is impossible.

给定n个点m条边,每条边有一个初始权值0或1,有一个最终权值0或1,每次可以给一个简单环上的边权值异或1,求一种方案使得每条边从初始权值变成最终权值,无解输出"NIE"

输入输出样例

输入样例#1:

6 8
1 2 0 1
2 3 1 0
1 3 0 1
2 4 0 0
3 5 1 1
4 5 0 1
5 6 0 1
4 6 0 1
输出样例#1:

2
3 1 3 2 1
3 4 6 5 4 分析:
模板题em。。。欧拉回路中最简单的一道题。。。然而我不会???因为我第一个做这题的。。。

CODE:
来源于https://loj.ac/submission/512425
 #include <iostream>
#include <cstring>
#include <cstdio>
#include <vector> const int maxn = 1e5 + ;
const int maxm = 2e6 + ; using namespace std; int cnt;
int d[maxn];
int to[maxm];
int nex[maxm];
int last[maxn], k = ;
int q[maxn], top;
int inq[maxn];
int vis[maxm];
vector<int> ans[maxn]; inline int read() {
int x = ;
char ch = getchar();
while (ch < '' || ch > '') ch = getchar();
while (ch >= '' && ch <= '') x = x * + ch - '', ch = getchar();
return x;
} int rit[], rits;
void write(int x) {
for (int i; x; x = i) i = x / , rit[++rits] = x - i * ;
while (rits) putchar(rit[rits--] + '');
} inline void add_edge(int x, int y) {
to[++k] = y;
nex[k] = last[x];
last[x] = k;
} void dfs(int x) {
if (inq[x]) {
++cnt;
int y = ;
do
y = q[top--], inq[y] = , ans[cnt].push_back(y);
while (y != x);
}
for (int &i = last[x]; i; i = nex[i])
if (!vis[i])
vis[i] = vis[i ^ ] = , inq[q[++top] = x] = , dfs(to[i]);
} int main(void) {
int n = read(), m = read();
while (m--) {
int x = read(), y = read(), a = read(), b = read();
if (a ^ b) {
add_edge(x, y);
add_edge(y, x);
d[x] ^= ;
d[y] ^= ;
}
}
for (register int i = ; i <= n; i++)
if (d[i]) {
cout << "NIE\n";
return ;
}
for (register int i = ; i <= n; i++) dfs(i);
write(cnt), putchar('\n');
for (register int i = ; i <= cnt; i++) {
write(ans[i].size()), putchar(' ');
for (int j = ; j < ans[i].size(); j++) write(ans[i][j]), putchar(' ');
write(ans[i][]), putchar('\n');
} return ;
}

 

[POI2011]SMI-Garbage的更多相关文章

  1. 【LOJ#2162】【POI2011】Garbage(欧拉回路)

    [LOJ#2162][POI2011]Garbage(欧拉回路) 题面 LOJ 题解 首先有一个比较显然的结论,对于不需要修改颜色的边可以直接删掉,对于需要修改的边保留.说白点就是每条边要被访问的次数 ...

  2. [LOJ #2162]「POI2011」Garbage

    题目大意:给一张$n$个点$m$条边的无向图,每条边是黑色的或白色的,要求变成一个目标颜色.可以从任意一个点开始,走一个简单环,回到开始的点,所经过的边颜色翻转.可以走无数次.问是否有一个方案完成目标 ...

  3. [POI2011]Garbage 欧拉回路

    [POI2011]Garbage 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2278 https://loj.ac/problem/216 ...

  4. BZOJ2278 : [Poi2011]Garbage

    如果两个环相交,那么相交的部分相当于没走. 因此一定存在一种方案,使得里面的环都不相交. 把不需要改变状态的边都去掉,剩下的图若存在奇点则无解. 否则,每找到一个环就将环上的边都删掉,时间复杂度$O( ...

  5. BZOJ2278 [Poi2011]Garbage[欧拉回路求环]

    首先研究环上性质,发现如果状态不变的边就不需要动了,每次改的环上边肯定都是起末状态不同的边且仅改一次,因为如果有一条边在多个环上,相当于没有改,无视这条边之后,这几个环显然可以并成一个大环.所以,我们 ...

  6. POI2011题解

    POI2011题解 2214先咕一会... [BZOJ2212][POI2011]Tree Rotations 线段树合并模板题. #include<cstdio> #include< ...

  7. Unity性能优化(3)-官方教程Optimizing garbage collection in Unity games翻译

    本文是Unity官方教程,性能优化系列的第三篇<Optimizing garbage collection in Unity games>的翻译. 相关文章: Unity性能优化(1)-官 ...

  8. BZOJ2527: [Poi2011]Meteors

    补一发题解.. 整体二分这个东西,一开始感觉复杂度不是很靠谱的样子 问了po姐姐,说套主定理硬干.. #include<bits/stdc++.h> #define ll long lon ...

  9. (四)G1 garbage collector

    g1专为大内存,多内核机型设计.可以兼顾高吞吐量和低暂停时间. g1将堆分为多个相同大小内存块,并发的标记线程,使得g1掌握了各个内存块的活对象数量, 内存回收阶段,g1根据用户指定的暂停时间,选择部 ...

随机推荐

  1. 【Python】- scrapy 爬取图片保存到本地、且返回保存路径

    https://blog.csdn.net/xueba8/article/details/81843534

  2. Rsync 恢复 libselinux.SO.1

    libselinux.SO.1  这个文件对 CentOS 7很重要, 误删掉后,会导致很多命令无法使用(比如yum ,rpm  命令),利用rsync这个工具来修复. 服务端执行如下配置:(选取正常 ...

  3. leetcode.数组.283移动零-Java

    1. 具体题目 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序. 示例: 输入: [0,1,0,3,12] 输出: [1,3,12,0,0] 说明: 必须 ...

  4. python-selenium -- 弹出框处理

    弹出框有两种:页面弹出框(可定位元素能操作).Windows弹出框(不能直接定位) 一.页面弹出框 等待弹出框出现之后,定位弹出框,操作其中元素 如: driver = webdriver.Chrom ...

  5. vim的基本快捷操作(一)

    一.光标移动 ^ 到该行第一个非空格字符处. + 到下一行的第一个非空格字符处 - 到上一行的第一个非空格字符处 `. 到上次修改点 <c-o> 到上次所停留位置, <c-i> ...

  6. 不在B中的A的子串数量 HDU - 4416 (后缀自动机模板题目)

    题目: 给定一个字符串a,又给定一系列b字符串,求字符串a的子串不在b中出现的个数. 题解: 先将所有的查询串放入后缀自动机(每次将sam.last=1)(算出所有子串个数) 然后将母串放入后缀自动机 ...

  7. Django-ORM初识

    Django之ORM基础 一.ORM简介: ORM概念: 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象的技术 ...

  8. 通过hint干掉笛卡尔积

    Z_ZZZZZZZZ_BENE 大约有400万数据 修改前   SELECT xxxx FROM ( SELECT DISTINCT FIELD1_CONTENT FROM xxxxxxxx_LOG@ ...

  9. [LOJ#2732] 「JOISC 2016 Day 2」雇佣计划

    参考博文 (不过个人感觉我讲的稍微更清楚一点) 题目就是让我们求图中满足数值大于等于B的连通块数量 然后我们可以尝试转换为求连通块两端所产生的“谷”的数量,显然一个连通块对谷可以贡献2的答案,最终答案 ...

  10. 用C#简单实现的36进制转换代码

    private const string initValue = "A0000001"; private static string cs = "0123456789AB ...