题目:P4930「FJ2014集训」采药人的路径

思路:

这篇不算题解,是让自己复习的,什么都没说清楚。

很久没有写点分治了,以前为了赶课件学的太急,板子都没打对就照着题解写题,导致学得很不扎实。

这道题差不多是在郭老师的指导下一点点凑出来的,还是没能自己完整写出一道题,惭愧。

这道题大意是:给出一棵边权为0/1的树,求满足以下条件的路径总数:0的个数等于1的个数,且路径上存在一点到路径两端也满足该条件。

这种求路径总数的题,可以想到用点分治。

把0看作-1,就可以转化为路径边权和为0。

如果没有休息点这个条件是很容易统计的,加上这个条件我们就要多记一些信息了。

点分治的容斥写法应用范围有限,用另一种写法会更方便。

类似树形背包,我们在统计经过u点的路径条数时,维护了一个之前遍历过的子树上的路径集合,每次进入一棵新子树,记录一下现在走的链,和之前集合里的链拼在一起形成答案,最后把现在的链加入集合中。

所以对这道题,我们维护现在走的路径和之前的路径集合时都分作两类:有休息点和没有休息点。

现在有休息点的路径某段后缀和为0,有一段和为0等价于有两点前缀和相等,开桶记录前缀和,类似P3941 入阵曲那道题。

没有休息点的路径用路径集合中有休息点的路径匹配,有休息点的路径之前有没有休息点都能匹配。

现在走的有休息点的路径可能本身已经满足条件了,要记入答案。

注意:休息点也可以不在路径上某点,而在根节点,即两边各有一条“1、-1”的路径,要加上这种情况。


Code:

#include <bits/stdc++.h>
using namespace std;
const int N=3e5+5,inf=0x3f3f3f3f;
int n,rt,rtsiz,tot[2],d[2][N],siz[N];
long long ans;
bool del[N];
struct bucket{//桶+时间戳
int tim,vis[N],c[N];
inline void add(int pos,int val=1){
if(vis[n+pos]==tim) c[n+pos]+=val;
else vis[n+pos]=tim,c[n+pos]=val;
}
inline int ask(int pos){
if(vis[n+pos]==tim) return c[n+pos];
else return 0;
}
}cnt[2],vis;
int Top,ver[N],val[N],nxt[N],head[N];
inline void add(int x,int y,int z){
ver[++Top]=y;val[Top]=z;nxt[Top]=head[x];head[x]=Top;
}
void findrt(int u,int fa,int all){//找重心
siz[u]=1;
int mxsiz=0;
for(int i=head[u];i;i=nxt[i]){
int v=ver[i];
if(v==fa||del[v]) continue;
findrt(v,u,all);
siz[u]+=siz[v];
mxsiz=max(mxsiz,siz[v]);
}
mxsiz=max(mxsiz,all-siz[u]);
if(mxsiz<rtsiz) rtsiz=mxsiz,rt=u;
}
void getdis(int u,int fa,int dis){
int op=1;
if(vis.ask(dis)==0) vis.add(dis),op=0;//之前没有出现相同路径长度 不存在休息点
d[op][++tot[op]]=dis;//记录路径长
for(int i=head[u];i;i=nxt[i]){
int v=ver[i];
if(v==fa||del[v]) continue;
getdis(v,u,dis+val[i]);
}
if(!op) vis.add(dis,-1);//如果是第一次出现 就退栈 倒出桶
}
void calc(int u){
++cnt[0].tim;++cnt[1].tim;++vis.tim;//更新时间戳 相当于memset
for(int i=head[u];i;i=nxt[i]){
int v=ver[i];
if(del[v]) continue;
tot[0]=tot[1]=0;
getdis(v,u,val[i]);
for(int j=1;j<=tot[0];++j) ans+=cnt[1].ask(-d[0][j]);//没有休息点的路径 用以前有休息点的路径匹配
for(int j=1;j<=tot[1];++j) ans+=cnt[0].ask(-d[1][j])+cnt[1].ask(-d[1][j]);//有休息点的路径 之前有没有休息点都能匹配
for(int j=1;j<=tot[0];++j) if(d[0][j]==0) ans+=cnt[0].ask(0);//特判
for(int j=1;j<=tot[0];++j) cnt[0].add(d[0][j]);//把当前路径加入路径集合
for(int j=1;j<=tot[1];++j) {
if(d[1][j]==0) ++ans;//注意当前路径也可能贡献答案
cnt[1].add(d[1][j]);
}
}
}
void dfs(int u){
del[u]=true;//删掉u点
calc(u);//计算过u点路径条数
for(int i=head[u];i;i=nxt[i]){
int v=ver[i];
if(del[v]) continue;
rtsiz=inf;
findrt(v,u,siz[v]);
dfs(rt);
}
}
int main(){
scanf("%d",&n);
for(int i=1,u,v,w;i<=n-1;++i){
scanf("%d%d%d",&u,&v,&w);
if(!w) w=-1;
add(u,v,w);
add(v,u,w);
}
rtsiz=inf;
findrt(1,0,n);
dfs(rt);
printf("%lld\n",ans);
return 0;
}

P4930「FJ2014集训」采药人的路径的更多相关文章

  1. 「FJ2014集训」采药人的路径

    啦啦啦 来写一篇题解 洛谷链接: P4930 「FJ2014集训」采药人的路径 统计路径?嗯往点分治上想. 把0和1转化为-1和1,求和完dis为0的路径就是阴阳平衡的路径了. 如果题目没有限制要有中 ...

  2. 「BZOJ3694」「FJ2014集训」最短路

    「BZOJ3694」「FJ2014集训」最短路 首先树剖没得说了,这里说一下并查集的做法, 对于一条非树边,它会影响的点就只有u(i),v(i)到lca,对于lca-v的路径上所有点x,都可通过1-t ...

  3. 「FJ2014集训 采药人的路径」

    题目 考虑一下把\(0\)看成\(-1\),那么就是找到一条边权和为\(0\)的路径,且这条路径可以被分成两段,边权和都是\(0\) 没有第二个限制就是点分裸题了 其实有了第二个限制还是点分裸题 考虑 ...

  4. bzoj3697_FJ2014集训_采药人的路径_solution

    小道士的矫情之路: 点分治, 对于每个子树,处理其内经过根(重心)的路径,然后递归下一层子树: 如何处理经过根的合法路径 合法有两个要求: 把输入的0改成-1后 1.len=0; 2.存在一个点i使被 ...

  5. [LOJ#2330]「清华集训 2017」榕树之心

    [LOJ#2330]「清华集训 2017」榕树之心 试题描述 深秋.冷风吹散了最后一丝夏日的暑气,也吹落了榕树脚下灌木丛的叶子.相识数年的Evan和Lyra再次回到了小时候见面的茂盛榕树之下.小溪依旧 ...

  6. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  7. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  8. Loj #2321. 「清华集训 2017」无限之环

    Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...

  9. Loj 2320.「清华集训 2017」生成树计数

    Loj 2320.「清华集训 2017」生成树计数 题目描述 在一个 \(s\) 个点的图中,存在 \(s-n\) 条边,使图中形成了 \(n\) 个连通块,第 \(i\) 个连通块中有 \(a_i\ ...

随机推荐

  1. draft.js开发富文本编辑器

    写在前头的话 在react中去寻找一个好用的富文本编辑器网上很少有推荐的,搜到的也只有一些个人不成熟的作品,慢慢发现网上比较推荐的一个东东叫做draft.js. 这个东西在网上可以找到的教程也是手指头 ...

  2. 【笔记】Python3导入包规则

    例如:这里给出了一种可能的包结构(在分层的文件系统中): sound/ 顶层包 __init__.py 初始化 sound 包 formats/ 文件格式转换子包 __init__.py wavrea ...

  3. PuTTy linux下tomcat服务的相关命令

    一:Linux下tomcat服务的启动.关闭与错误跟踪,使用PuTTy远程连接到服务器以后,通常通过以下几种方式启动关闭tomcat服务:切换到tomcat主目录下的bin目录(cd usr/loca ...

  4. proteus 8.8 直装版提示Symbol $MKRORIGIN used but not found in libraries 安装后没有库

    用管理员运行程序,然后再通过菜单打开仿真文件是没问题. 解决方法:通常的安装目录是C:\Program Files (x86)\Labcenter Electronics\Proteus 8 Prof ...

  5. Python3数据分析与挖掘建模实战

    Python3数据分析与挖掘建模实战  整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的时 ...

  6. vagrant简介

    什么是vagrant? 简单理解,就是可以通过Vagrant这个工具管理虚拟机,比如说想创建一个centos环境的虚拟机,不需要安装系统这么麻烦,通过vagrant可以快速创建 官网地址:https: ...

  7. ML面试1000题系列(71-80)

    本文总结ML面试常见的问题集 转载来源:https://blog.csdn.net/v_july_v/article/details/78121924 71.看你是搞视觉的,熟悉哪些CV框架,顺带聊聊 ...

  8. mysql错误日志目录

    在windows下,一般是mysql安装目录下的data目录下 ,扩展名是.err的文件.

  9. Codeforces 449B

    题目链接 B. Jzzhu and Cities time limit per test 2 seconds memory limit per test 256 megabytes input sta ...

  10. 一次web请求发生的神奇故事

    网络时代来临的时候,一个食指的点击就能解决很多问题! 那么当你的食指点击的时候,都发生了哪些神奇的事情呢?下面从几个角度为你做一个指引 1. 网络角度:一次网络请求是如何实现的 2. 浏览器角度:He ...