sequence

考虑长度<=x的方案数F(x),然后(F(x)-F(x-1))*x贡献到答案里

n平方的做法可以直接DP,

感觉有式子可言,

就推出式子:类似coat,每个长度为i的计算i次。

再容斥下:

F是方案数,还是求:

枚举分成的段数,枚举多少个超过i进行容斥:

突破口:有个n-i*k-1,意味着i*k<=n,这样的i和k暴力枚举一共nlogn复杂度

提出来,考虑干掉j

强行推式子:

处理:

(怎么看怎么也看不出什么道理的样子)

来找组合意义吧:

有n-ik个球,我们先从中选出j个,再从选出的j个中选出k个。在j个球中我们选出一个特殊的球,对于剩下的球用m-1种颜色染色。

考虑讨论这个特殊的球是不是这k个球中的

即可得到;

(这里少写了C(n-i*k-k,k))

预处理m-1的次幂和m的次幂和阶乘阶乘逆元

O(nlogn)

别忘了最后用n*m^n-

#include<bits/stdc++.h>
#define reg register int
#define il inline
#define fi first
#define se second
#define mk(a,b) make_pair(a,b)
#define numb (ch^'0')
#define pb push_back
#define solid const auto &
#define enter cout<<endl
#define pii pair<int,int>
using namespace std;
typedef long long ll;
template<class T>il void rd(T &x){
char ch;x=;bool fl=false;while(!isdigit(ch=getchar()))(ch=='-')&&(fl=true);
for(x=numb;isdigit(ch=getchar());x=x*+numb);(fl==true)&&(x=-x);}
template<class T>il void output(T x){if(x/)output(x/);putchar(x%+'');}
template<class T>il void ot(T x){if(x<) putchar('-'),x=-x;output(x);putchar(' ');}
template<class T>il void prt(T a[],int st,int nd){for(reg i=st;i<=nd;++i) ot(a[i]);putchar('\n');} int mod;
namespace Modulo{
int ad(int x,int y){return (x+y)>=mod?x+y-mod:x+y;}
void inc(int &x,int y){x=ad(x,y);}
int mul(int x,int y){return (ll)x*y%mod;}
void inc2(int &x,int y){x=mul(x,y);}
int qm(int x,int y=mod-){int ret=;while(y){if(y&) ret=mul(x,ret);x=mul(x,x);y>>=;}return ret;}
}
using namespace Modulo;
namespace Miracle{
const int N=+;
int n,m;
int jie[N],inv[N];
int iv[N];
int m0[N],m1[N];
int C(int n,int m){
if(n<||m<||n<m) return ;
return mul(jie[n],mul(inv[m],inv[n-m]));
}
int main(){
rd(n);rd(m);rd(mod);
jie[]=;
for(reg i=;i<=n;++i) jie[i]=mul(jie[i-],i);
inv[n]=qm(jie[n],mod-);
for(reg i=n-;i>=;--i) inv[i]=mul(inv[i+],i+);
iv[]=;
for(reg i=;i<=n;++i){
iv[i]=mul(mod-mod/i,iv[mod%i]);
}
m0[]=m1[]=;
for(reg i=;i<=n;++i){
m0[i]=mul(m0[i-],m);
m1[i]=mul(m1[i-],m-);
}
int ans=;
for(reg i=;i<n;++i){
for(reg k=;k<=n;++k){
if(i*k+k>n) break;
int tmp=;//
if(k!=) tmp=ad(tmp,mul(C(n-i*k,k),mul(k,mul(m1[k-],m0[n-i*k-k]))));
if(n-i*k-k->=) tmp=ad(tmp,mul(C(n-i*k,k),mul(m1[k],mul(m0[n-i*k-k-],n-i*k-k))));
tmp=mul(tmp,(k&)?mod-:);
tmp=mul(tmp,iv[n-i*k]);
ans=ad(ans,tmp);
}
}
ans=mul(ans,m);
ans=ad(mul(n,qm(m,n)),mod-ans);
ot(ans);
return ;
} }
signed main(){
Miracle::main();
return ;
} /*
Author: *Miracle*
*/

突破口是i,k总共对数nlogn级别,干掉j用组合意义大力推导

sequence——强行推式子+组合意义的更多相关文章

  1. LOJ 3399 -「2020-2021 集训队作业」Communication Network(推式子+组合意义+树形 DP)

    题面传送门 一道推式子题. 首先列出柿子,\(ans=\sum\limits_{T_2}|T_1\cap T_2|·2^{T_1\cap T_2}\) 这个东西没法直接处理,不过注意到有一个柿子 \( ...

  2. Codeforces 917D - Stranger Trees(矩阵树定理/推式子+组合意义)

    Codeforces 题目传送门 & 洛谷题目传送门 刚好看到 wjz 在做这题,心想这题之前好像省选前做过,当时觉得是道挺不错的题,为啥没写题解呢?于是就过来补了,由此可见我真是个大鸽子(( ...

  3. Atcoder Grand Contest 013 E - Placing Squares(组合意义转化+矩阵快速幂/代数推导,思维题)

    Atcoder 题面传送门 & 洛谷题面传送门 这是一道难度 Cu 的 AGC E,碰到这种思维题我只能说:not for me,thx 然鹅似乎 ycx 把题看错了? 首先这个平方与乘法比较 ...

  4. Codeforces 1528F - AmShZ Farm(转化+NTT+推式子+第二类斯特林数)

    Codeforces 题目传送门 & 洛谷题目传送门 神仙题,只不过感觉有点强行二合一(?). 首先考虑什么样的数组 \(a\) 符合条件,我们考虑一个贪心的思想,我们从前到后遍历,对于每一个 ...

  5. 牛客练习赛43F(推式子)

    要点 题目链接 1e18的数据无法\(O(n)\)的容斥,于是推式子,官解,其中式子有点小错误 不必预处理mu,直接按照素数的个数判断正负即可 #include <bits/stdc++.h&g ...

  6. IM推送保障及网络优化详解(二):如何做长连接加推送组合方案

    对于移动APP来说,IM功能正变得越来越重要,它能够创建起人与人之间的连接.社交类产品中,用户与用户之间的沟通可以产生出更好的用户粘性. 在复杂的 Android 生态环境下,多种因素都会造成消息推送 ...

  7. 【cf961G】G. Partitions(组合意义+第二类斯特林数)

    传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...

  8. BZOJ5093 图的价值——推式子+第二类斯特林数

    原题链接 题解 题目等价于求这个式子 \[ans=n2^{\frac{(n-1)(n-2)}{2}}\sum\limits_{i=0}^{n-1}\binom{n-1}{i}i^k\] 有这么一个式子 ...

  9. HDU 5860 Death Sequence(递推)

    HDU 5860 Death Sequence(递推) 题目链接http://acm.split.hdu.edu.cn/showproblem.php?pid=5860 Description You ...

随机推荐

  1. MySQL 开启远程访问权限 | 宝塔系统

    1.进入 MySQL 管理菜单 2.选择权限为所有人

  2. cf round 482D Kuro and GCD and XOR and SUM

    题意: 开始有个空集合,现在有两种操作: $(1,x)$:给集合加一个数$x$,$x \leq 10^5$; $(2,x,k,s)$:在集合中找一个$a$,满足$a \leq s-x$,而且$k|gc ...

  3. HR招聘_(七)_招聘方法论(面试环节·动机判断)

    候选人选择一般会看硬性技能,软性技能,动机意愿三个方面的匹配程度,硬性技能主要指纵向的业务能力,部门面试官也会着重看这方面,软性技能包括沟通,情商,气质等.动机意愿非常重要,再优秀的如果没有意愿,动机 ...

  4. 从0开始学习 GitHub 系列之「03.Git 速成」

    前面的 GitHub 系列文章介绍过,GitHub 是基于 Git 的,所以也就意味着 Git 是基础,如果你不会 Git ,那么接下来你完全继续不下去,所以今天的教程就来说说 Git ,当然关于 G ...

  5. I / O流 类

    一.概述 1 基本概念 I/O就是Input/Output的简写,也就是输入/输出的含义. I/O流就是指像流水一样源源不断地进行读写的过程.   2 基本分类   根据读写数据的单元分为:字节流 和 ...

  6. php is_null、empty、isset的区别

    isset 判断变量是否已存在 empty 判断变量是否为空或为0 is_null 判断变量是否为NULL 变量 empty is_null isset $a=”” true false true $ ...

  7. 【JZOJ4858】【GDOI2017模拟11.4】Walk

    题目描述 在比特镇一共有n 个街区,编号依次为1 到n,它们之间通过若干条单向道路连接. 比特镇的交通系统极具特色,除了m 条单向道路之外,每个街区还有一个编码vali,不同街区可能拥有相同的编码.如 ...

  8. 【JZOJ4792】【NOIP2016提高A组模拟9.21】整除

    题目描述 麦克雷有一个1~n的排列,他想知道对于一些区间,有多少对区间内的数(x,y),满足x能被y整除. 输入 第一行包含2个正整数n,m.表示有n个数,m个询问. 接下来一行包含n个正整数,表示麦 ...

  9. HDU 4193

    本题思路:用sum[]数组维护前缀和, 当然这里需要把原数组扩大为原来的两倍. 然后对于任意一个长度为n的区间 k.....k+n-1,如果有该区间内的最小值大于等于sum[k-1]那么该种情况就符合 ...

  10. 小爬爬1.requests基础操作

    1.requests安装的问题 (1)如果requests没有安装,我们需要先安装这个模块,在cmd安装不了,我们可以在下面的位置,打开的窗体安装requests模块 pip install requ ...