Codeforces667D(spfa+dp)
题意:
给定一个带权有向图,若P(A,B)表示节点A到B的最短路长度,选择四个节点ABCD,使得P(A,B)+P(B,C)+P(C,D)最大。
节点数n在1,000以内,边数m在2,000以内。
思路:
首先先将两两点之间的最短路都算出来。
之后建立pre和next两个数组,但在这里我用结构体保存其权值和编号一直算不出正确结果,退而求其次,只保存最长路径排名前三的结点,每次遇到一个更长的边,就将另外两条边往后推一个位置,给新的最长边留出位置。
在枚举的时候,当最长边不存在的时候、最长边对应的点与b、c点冲突的时候,两个最长边对应的点彼此冲突的时候,跳过此次枚举。
最后直接输出对应的结果编号即可。
#include<cstdio>
#include<vector>
#include<queue>
using namespace std;
const int inf = 99999999;
const int maxn = 10000 + 5;
struct edge {
int v, w;
};
int nex[maxn][3], pre[maxn][3];
vector<vector<edge>>a;
int n, m, dis[maxn][maxn];
bool flag[maxn][maxn];
void add_edge(int u, int v, int w) {
edge tmp;
tmp.v = v;
tmp.w = w;
a[u].push_back(tmp);
}
void spfa(int s) {
queue<int>q;
q.push(s);
dis[s][s] = 0; flag[s][s] = true;
while (!q.empty()) {
int u = q.front(); q.pop(); flag[s][u] = false;
for (int i = 0; i < a[u].size(); i++) {//扫描所有邻接点
if (dis[s][a[u][i].v] > dis[s][u] + a[u][i].w) {
dis[s][a[u][i].v] = dis[s][u] + a[u][i].w;
if (!flag[s][a[u][i].v]) {
q.push(a[u][i].v);
flag[s][a[u][i].v] = true;
}
}
}
}
}
void upd() {
for (int i = 1; i <= n; i++) {
for (int j = 0; j < 3; j++) {
nex[i][j] = -1;
pre[i][j] = -1;
}
}
int i, j;
for (i = 1; i <= n; i++){
for (j = 1; j <= n; j++){
if (dis[i][j] == inf) continue;
if (nex[i][0] == -1 || dis[i][nex[i][0]]<dis[i][j]){
nex[i][2] = nex[i][1];
nex[i][1] = nex[i][0];
nex[i][0] = j;
}
else if (nex[i][1] == -1 || dis[i][nex[i][1]]<dis[i][j]){
nex[i][2] = nex[i][1];
nex[i][1] = j;
}
else if (nex[i][2] == -1 || dis[i][nex[i][2]]<dis[i][j]){
nex[i][2] = j;
}
}
}
for (i = 1; i <= n; i++){
for (j = 1; j <= n; j++){
if (dis[j][i] == inf) continue;
if (pre[i][0] == -1 || dis[pre[i][0]][i]<dis[j][i]){
pre[i][2] = pre[i][1];
pre[i][1] = pre[i][0];
pre[i][0] = j;
}
else if (pre[i][1] == -1 || dis[pre[i][1]][i]<dis[j][i]){
pre[i][2] = pre[i][1];
pre[i][1] = j;
}
else if (pre[i][2] == -1 || dis[pre[i][2]][i]<dis[j][i]){
pre[i][2] = j;
}
}
}
}
int main() {
int u, v, w;
scanf("%d%d", &n, &m);
a.resize(maxn);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= n; j++) {
dis[i][j] = inf;
flag[i][j] = false;
}
}
for (int i = 1; i <= m; i++) {
scanf("%d%d%d", &u, &v, &w);
add_edge(u, v, w);
}
for (int i = 1; i <= n; i++) {
spfa(i);
}
upd();
int ans = 0, str[4];
for (int b = 1; b <= n; b++) {
for (int c = 1; c <= n; c++) {
if (b == c || dis[b][c] == inf) continue;
for (int k = 0; k < 3; k++) {
for (int l = 0; l < 3; l++) {
if (pre[b][k] == -1 || nex[c][l] == -1)continue;
if (pre[b][k] == b || pre[b][k] == c)continue;
if (nex[c][l] == b || nex[c][l] == c)continue;
if (pre[b][k] == nex[c][l])continue;
int tem = dis[pre[b][k]][b] + dis[b][c] + dis[c][nex[c][l]];
if (tem > ans)
{
ans = tem;
str[0] = pre[b][k]; str[3] = nex[c][l];
str[1] = b; str[2] = c;
}
}
}
}
}
printf("%d %d %d %d\n", str[0], str[1], str[2], str[3]);
return 0;
}
Codeforces667D(spfa+dp)的更多相关文章
- 【BZOJ】1003: [ZJOI2006]物流运输trans(SPFA+DP)
http://www.lydsy.com/JudgeOnline/problem.php?id=1003 这题一开始看是不会的额,,,还是看题解了..一开始我觉得不能用最短路啥的,,看了题解发现这是d ...
- PAT 甲级 1087 All Roads Lead to Rome(SPFA+DP)
题目链接 All Roads Lead to Rome 题目大意:求符合题意(三关键字)的最短路.并且算出路程最短的路径有几条. 思路:求最短路并不难,SPFA即可,关键是求总路程最短的路径条数. 我 ...
- HDU-3499:Flight(SPFA+dp)
Recently, Shua Shua had a big quarrel with his GF. He is so upset that he decides to take a trip to ...
- BZOJ2763 [JLOI2011]飞行路线(SPFA + DP)
题目 Source http://www.lydsy.com/JudgeOnline/problem.php?id=2763 Description Alice和Bob现在要乘飞机旅行,他们选择了一家 ...
- BZOJ 1003: [ZJOI2006]物流运输(spfa+dp)
http://www.lydsy.com/JudgeOnline/problem.php?id=1003 题意: 思路: 首先用spfa计算一下任意两天之内的最短路,dis[a][b]表示的就是在第a ...
- 51nod1326 遥远的旅途(spfa+dp)
题意: 给出一个无向图,问从1到n是否存在一条长度为L的路径. n,m<=50,1<=路径长度<=10000,L<=10^18 思路: 改变一下思路,我们发现,假设从起点1走到 ...
- 2019.01.22 bzoj3875: [Ahoi2014&Jsoi2014]骑士游戏(spfa+dp)
传送门 题意简述:nnn个怪物,对于编号为iii的怪物可以选择用aia_iai代价将其分裂成另外的bib_ibi个怪物或者用cic_ici代价直接消灭它,现在问消灭编号为1的怪物用的最小代价. ...
- ACdreamOJ 1154 Lowbit Sum (数字dp)
ACdreamOJ 1154 Lowbit Sum (数位dp) ACM 题目地址:pid=1154" target="_blank" style="color ...
- 「SDOI2016」储能表(数位dp)
「SDOI2016」储能表(数位dp) 神仙数位 \(dp\) 系列 可能我做题做得少 \(QAQ\) \(f[i][0/1][0/1][0/1]\) 表示第 \(i\) 位 \(n\) 是否到达上界 ...
随机推荐
- 20191228--python学习第四天
今日内容: 列表 元组 内容回顾与补充 1.计算机基础 硬件:CPU/内存/硬盘/主板/网卡 操作系统:linux(免费/开源) centos/ubuntu/redhat windows ma ...
- 数据算法 --hadoop/spark数据处理技巧 --(11.K-均值聚类 12. k-近邻)
十一.k-均值聚类 这个需要MR迭代多次. 开始时,会选择K个点作为簇中心,这些点成为簇质心.可以选择很多方法啦初始化质心,其中一种方法是从n个点的样本中随机选择K个点.一旦选择了K个初始的簇质心,下 ...
- Linux 下用 superpi 测试 CPU 性能
- PgSQL备份
SQL转储. 这里我们用到的工具是pg_dump和pg_dumpall. 这种方式可以在数据库正在使用的时候进行完整一致的备份,并不阻塞其它用户对数据库的访问.它会产生一个脚本文件,里面包含备份开始时 ...
- raid知识梳理及其详细介绍
1 raid级别 生产环境常用到的raid级别有raid0,raid1,raid5,raid10.所以侧重学习这几种raid级别即可. 1.1 raid0条带卷 raid0示意图: raid0特点介绍 ...
- ES6学习笔记(二):教你玩转类的继承和类的对象
继承 程序中的继承: 子类可以继承父类的一些属性和方法 class Father { //父类 constructor () { } money () { console.log(100) } } c ...
- Linux中screen命令
screen是一款由GNU计划开发的用于命令行终端切换的自由软件.用户可以通过该软件同时连接多个本地或远程的命令行会话,并在其间自由切换.GNU Screen可以看作是窗口管理器的命令行界面版本.它提 ...
- dmock 基于Django的轻量级Mock平台
GitHub:https://github.com/yjlch1016/dmock # dmock 基于Django的轻量级Mock平台 dmock即Django+Mock的缩写 一.思路: mock ...
- go微服务框架kratos学习笔记九(kratos 全链路追踪 zipkin)
目录 go微服务框架kratos学习笔记九(kratos 全链路追踪 zipkin) zipkin使用demo 数据持久化 go微服务框架kratos学习笔记九(kratos 全链路追踪 zipkin ...
- MySQL数据库root密码忘记丢失重置方法
对于DBA来说,丢失超管用户root的密码是致命的, 可以通过添加--ship-grant-tables参数来跳过权限表. 1.忘记root密码,进不去数据库: 这个时候需要强制停库,先查看MySQL ...