正解:矩阵快速幂

解题报告:

我永远喜欢loj!

一看到这个就应该能想到矩阵快速幂?

然后就考虑转移式,发现好像直接想不好想,,,主要的问题在于这个*$i$,就很不好搞$QAQ$

其实不难想到,$\sum_{i=1}^{n}a_i\cdot(n-i)$这样一个式子是可以在矩阵快速幂中推出来的(类似这个形式的都可,,,就随着编号递增系数递减这样子$QwQ$

具体来说就是表示成$\sum_{i=1}^{n}\sum_{j=1}^{i}a_j$,就欧克辣(具体实现后面港,,,

但是问题在于,它是$\sum_{i=1}^{n}a_i\cdot i$这样的,就随着编号递增系数递增这样子的$QwQ$

那显然就想到,变形嘛,就变成$\sum_{i=1}^{n}a_i\cdot n-\sum_{i=1}^{n}a_i\cdot(n-i)$这样子

然后就做完辣,,,?

剩下的就是考虑怎么表示出$\sum_{i=1}^{n}a_i$和$\sum_{i=1}^{n}a_i\cdot(n-i)$辣

对于第一个的话,可以考虑$\begin{bmatrix}\sum_{j=1}^{i-1} f_i \\ f_i\\ f_{i-1}\end{bmatrix}$$\cdot$$\begin{bmatrix}1 & 1 & 0\\ 0 & 1 & 1\\ 0 & 1 & 0\end{bmatrix}$,就欧克辣

然后第二个就差不多的方法,再加一维就好,$\begin{bmatrix}\sum _{j=1}^{i-1}\sum_{k=1}^{j}f_k\\ \sum_{j=1}^{i}f_j\\ f_{i+1}\\ f_{i}\end{bmatrix}$$\cdot$$\begin{bmatrix}1 & 1 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 1 & 1\\0 & 0 & 1 & 0\end{bmatrix}$

欧克做完辣,,,

#include<bits/stdc++.h>
using namespace std;
#define il inline
#define int long long
#define gc getchar()
#define ri register int
#define rb register bool
#define rc register char
#define rp(i,x,y) for(ri i=x;i<=y;++i) int n,mod;
struct matrix{int mat[][];il void clr(){memset(mat,,sizeof(mat));}}e1,e2,fib; il int read()
{
rc ch=gc;ri x=;rb y=;
while(ch!='-' && (ch>'' || ch<''))ch=gc;
if(ch=='-')ch=gc,y=;
while(ch>='' && ch<='')x=(x<<)+(x<<)+(ch^''),ch=gc;
return y?x:-x;
}
il matrix multi(matrix gd,matrix gs)
{
matrix ret;ret.clr();
rp(i,,)
rp(j,,)
rp(k,,)ret.mat[i][j]=(ret.mat[i][j]+gd.mat[i][k]*gs.mat[k][j]%mod)%mod;
return ret;
}
il matrix power_1(ri x)
{matrix ret;ret.clr();ret.mat[][]=;while(x){if(x&)ret=multi(ret,e1);e1=multi(e1,e1);x>>=;}return ret;}
il matrix power_2(ri x)
{matrix ret;ret.clr();ret.mat[][]=;while(x){if(x&)ret=multi(ret,e2);e2=multi(e2,e2);x>>=;}return ret;}
namespace sub1
{
il void main()
{
int fib1=,fib2=,as=;
rp(i,,n){as=(as+1ll*fib1*i%mod)%mod;fib2+=fib1;fib1=fib2-fib1;if(fib2>=mod)fib2-=mod;}
printf("%lld\n",as);
}
} main()
{
// freopen("fib.in","r",stdin);freopen("fib.out","w",stdout);
n=read();mod=read();
// if(n<=100)return sub1::main(),0;
e1.clr();e1.mat[][]=;e1.mat[][]=;e1.mat[][]=;e1.mat[][]=;e1.mat[][]=;
e2.clr();e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;e2.mat[][]=;
matrix as1=power_1(n),as2=power_2(n);
printf("%lld\n",((as1.mat[][]*n%mod-as2.mat[][])%mod+mod)%mod);
return ;
}

最后放下代码就好辣!(跑得飞慢,,,QAQ

upd:

今天交流了下,,,发现我这个方法太呆了$TT$

说个神一点儿的方法

可以发现斐波拉契数列其实有个规律,,,就 $ 1+\sum_{j=1}^{i} f_{j}=f_{i} $ (其实是这个:$\sum_{i=1}^nf_i=f_{n+2}-f_2$

设$s_i=\sum_{j=1}^i$

可以得到,$ans=n\cdot s_n-(s_{1}+s_{2}+...+s_{n-1})$

代入上面那个然后变形一下可得,$ans=n\cdot f_{n+2}-f_{n+3}+n+2$

然后就傻逼题了,懒得放代码辽太$easy$辣$QAQ$

随机推荐

  1. 微信小程序之购物车demo

    这篇小demo主要使用了一下几个技术点 1.全局变量的使用 在这里定义的变量 任何一个页面和组件都可以访问到 在使用到的页面 const app = getApp(); 声明一个实例 然后 app.g ...

  2. Mysql 数据库优化(一)

    一 避免网页访问错误 1  数据库连接timeout产生页面5xx错误 2 慢查询造成页面无法加载 3 阻塞造成数据无法提交 二 增加数据库的稳定性 三 优化用户体验 1 流畅的页面访问速度 2 良好 ...

  3. C# 局部函数与事件

    本文告诉大家使用局部函数可能遇到的坑. 在以前,如果有一个事件public event EventHandler Foo和一个函数private void Program_Foo(object sen ...

  4. 交互式计算和开发环境:IPython

  5. Bert系列(二)——源码解读之模型主体

    本篇文章主要是解读模型主体代码modeling.py.在阅读这篇文章之前希望读者们对bert的相关理论有一定的了解,尤其是transformer的结构原理,网上的资料很多,本文内容对原理部分就不做过多 ...

  6. HDFS概念

  7. H3C 主机接收IP包

  8. Python os.getcwd() 方法

    Python os.getcwd() 方法  Python OS 文件/目录方法 概述 os.getcwd() 方法用于返回当前工作目录. 语法 getcwd()方法语法格式如下: os.getcwd ...

  9. supersockets和 AppSession,AppServer 配合工作

    现在, 你已经有了 RequestInfo, ReceiveFilter 和 ReceiveFilterFactory, 但是你还没有正式使用它们. 如果你想让他们在你的程序里面可用, 你需要定义你们 ...

  10. 机器学习降维方法概括, LASSO参数缩减、主成分分析PCA、小波分析、线性判别LDA、拉普拉斯映射、深度学习SparseAutoEncoder、矩阵奇异值分解SVD、LLE局部线性嵌入、Isomap等距映射

    机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近 ...