题面

题目分析

超级模板题:

多项式乘法

多项式求逆

多项式开根

多项式求导

多项式求积分

多项式求对数

多项式求自然对数为底的指数函数

多项式快速幂

代码实现

#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<cstdio>
#include<iomanip>
#include<cstdlib>
#define MAXN 0x7fffffff
typedef long long LL;
const int N=400005,mod=998244353;
using namespace std;
inline int Getint(){register int x=0,f=1;register char ch=getchar();while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}return x*f;}
int ksm(int x,int k){
int ret=1;
while(k){
if(k&1)ret=(LL)ret*x%mod;
x=(LL)x*x%mod;
k>>=1;
}
return ret;
}
void Der(int *f,int *g,int len){
for(int i=0;i<len;i++)g[i]=(LL)f[i+1]*(i+1)%mod;
g[len-1]=0;
}
void Int(int *f,int *g,int len){
for(int i=1;i<len;i++)g[i]=(LL)f[i-1]*ksm(i,mod-2)%mod;
g[0]=0;
}
void NTT(int *a,int x,int K){
static int rev[N],lst;
int n=1<<x;
if(n!=lst){
for(int i=0;i<n;i++)rev[i]=(rev[i>>1]>>1)|((i&1)<<x-1);
lst=n;
}
for(int i=0;i<n;i++)if(i<rev[i])swap(a[i],a[rev[i]]);
for(int i=1;i<n;i<<=1){
int tmp=i<<1,wn=ksm(3,(mod-1)/tmp);
if(K==-1)wn=ksm(wn,mod-2);
for(int j=0;j<n;j+=tmp){
int w=1;
for(int k=0;k<i;k++,w=(LL)w*wn%mod){
int x=a[j+k],y=(LL)w*a[i+j+k]%mod;
a[j+k]=(x+y)%mod;a[i+j+k]=(x-y+mod)%mod;
}
}
}
if(K==-1){
int inv=ksm(n,mod-2);
for(int i=0;i<n;i++)a[i]=(LL)a[i]*inv%mod;
}
}
void Inv(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=ksm(f[0],mod-2),void();
Inv(f,g,len>>1),copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(mod+2-(LL)A[i]*g[i]%mod)*g[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
const int inv2=(mod+1)/2;
void Sqrt(int *f,int *g,int len){
static int A[N],B[N];
if(len==1)return g[0]=sqrt(f[0]),void();
Sqrt(f,g,len>>1),Inv(g,B,len);
copy(f,f+len,A);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(B+len,B+n,0),fill(g+(len>>1),g+n,0);
NTT(A,x,1),NTT(B,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(g[i]+(LL)A[i]*B[i]%mod)%mod*inv2%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
void Ln(int *f,int *g,int len){
static int A[N],B[N];
Der(f,A,len),Inv(f,B,len);
int x=log2(len<<1),n=1<<x;
fill(A+len,A+n,0),fill(B+len,B+n,0);
NTT(A,x,1),NTT(B,x,1);
for(int i=0;i<n;i++)A[i]=(LL)A[i]*B[i]%mod;
NTT(A,x,-1),Int(A,g,len);
}
void Exp(int *f,int *g,int len){
static int A[N];
if(len==1)return g[0]=1,void();
int x=log2(len<<1),n=1<<x;
Exp(f,g,len>>1);
fill(A+len,A+n,0),fill(g+(len>>1),g+n,0);
Ln(g,A,len);
A[0]=(f[0]+1-A[0]+mod)%mod;
for(int i=1;i<len;i++)A[i]=(f[i]-A[i]+mod)%mod;
NTT(A,x,1),NTT(g,x,1);
for(int i=0;i<n;i++)g[i]=(LL)g[i]*A[i]%mod;
NTT(g,x,-1),fill(g+len,g+n,0);
}
void Pow(int *f,int len,int k){
static int A[N];
Ln(f,A,len);
for(int i=0;i<len;i++)A[i]=(LL)A[i]*k%mod;
Exp(A,f,len);
}
int a[N],b[N];
int main(){
int n=Getint(),k=Getint();
for(int i=0;i<n;i++)a[i]=(Getint()%mod+mod)%mod;
int x=ceil(log2(n)),len=1<<x;
Sqrt(a,b,len),Inv(b,a,len);
Int(a,b,len),Exp(b,a,len);
Inv(a,b,len),b[0]++;
Ln(b,a,len),a[0]++;
Pow(a,len,k),Der(a,b,n);
for(int i=0;i<n;i++)cout<<b[i]<<' ';
return 0;
}

【HZOI2015】帕秋莉的超级多项式的更多相关文章

  1. 【Cogs2187】帕秋莉的超级多项式(多项式运算)

    [Cogs2187]帕秋莉的超级多项式(多项式运算) 题面 Cogs 题解 多项式运算模板题 只提供代码了.. #include<iostream> #include<cstdio& ...

  2. COGS2187 [HZOI 2015] 帕秋莉的超级多项式

    什么都别说了,咱心态已经炸了... question 题目戳这里的说... 其实就是叫你求下面这个式子的导函数: noteskey 其实是道板子题呢~ 刚好给我们弄个多项式合集的说... 各种板子粘贴 ...

  3. COGS 2189 帕秋莉的超级多项式

    放模板啦! 以后打比赛的时候直接复制过来. 说句实话vector的效率真的不怎么样,但是似乎也还行,最主要是……写得比较爽. #include <cstdio> #include < ...

  4. P4910 帕秋莉的手环

    题目背景 帕秋莉是蕾米莉亚很早结识的朋友,现在住在红魔馆地下的大图书馆里.不仅擅长许多魔法,还每天都会开发出新的魔法.只是身体比较弱,因为哮喘,会在咏唱符卡时遇到麻烦. 她所用的属性魔法,主要是生命和 ...

  5. [Luogu] P4910 帕秋莉的手环

    题目背景 帕秋莉是蕾米莉亚很早结识的朋友,现在住在红魔馆地下的大图书馆里.不仅擅长许多魔法,还每天都会开发出新的魔法.只是身体比较弱,因为哮喘,会在咏唱符卡时遇到麻烦. 她所用的属性魔法,主要是生命和 ...

  6. cogs 998. [東方S2] 帕秋莉·诺蕾姬

    二次联通门 : cogs 998. [東方S2] 帕秋莉·诺蕾姬 交上去后发现自己没上榜 就想着加点黑科技 把循环展开一下 结果WA了.. 万恶的姆Q /* cogs 998. [東方S2] 帕秋莉· ...

  7. P4915 帕秋莉的魔导书(动态开点线段树)

    题目背景 帕秋莉有一个巨大的图书馆,里面有数以万计的书,其中大部分为魔导书. 题目描述 魔导书是一种需要钥匙才能看得懂的书,然而只有和书写者同等或更高熟练度的人才能看得见钥匙.因此,每本魔导书都有它自 ...

  8. 洛谷 P4910 帕秋莉的手环 矩阵乘法+快速幂详解

    矩阵快速幂解法: 这是一个类似斐波那契数列的矩乘快速幂,所以推荐大家先做一下下列题目:(会了,差不多就是多倍经验题了) 注:如果你不会矩阵乘法,可以了解一下P3390的题解 P1939 [模板]矩阵加 ...

  9. P4915 帕秋莉的魔导书

    题目链接 题意分析 当前等级为\(x\)的魔法书会对等级在\([x,inf]\)的所有人造成\(y\)的影响 所以除了求平均值之外 就是区间修改区间求和 需要使用动态开点 + 标记永久化 需要注意的是 ...

随机推荐

  1. flutter 图片为空报错

    imgpath != null ? Image.network(imgpath) : Container() 如果不判断imgpath 为空 network 内的url 为空就会报错

  2. 关于resin的一个错误,Resin 启动报错,访问页面500

    背景 客户集成javaagent报错,客户用的是resin,在本地复现问题,修改了bug,其中在resin中发布war包遇到的错误. 完整错误 500 [show] WEB-INF/web.xml:5 ...

  3. 剑指offer——17数值的整数次方

    题目描述 给定一个double类型的浮点数base和int类型的整数exponent.求base的exponent次方.   保证base和exponent不同时为0   一般解法: 直接相乘: cl ...

  4. Java超简明入门学习笔记(一)

    Java编程思想第4版学习笔记(一) 第二章 一切都是对象(Hello World)          这个笔记本主要记录了我在学习Java编程思想(第4版,中文版)的过程中遇到的重难点及其分析.主要 ...

  5. 21-2-substring

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  6. [转载]Spring AOP 深入剖析

    转载自 http://www.cnblogs.com/digdeep/p/4528353.html 多谢@digdeep AOP是Spring提供的关键特性之一.AOP即面向切面编程,是OOP编程的有 ...

  7. iOS进阶四-自动释放池原理

    概述 AutoreleasePool(自动释放池)是OC中的一种内存自动回收机制,它可以延迟加入AutoreleasePool中的变量release的时机.在正常情况下,创建的变量会在超出其作用域的时 ...

  8. Java面试(1)

    一.Java基础 什么是字符串常量池? Java中的字符串常量池(String Pool)是存储在Java堆内存中的字符串池: String是java中比较特殊的类,我们可以使用new运算符创建Str ...

  9. Rsync 参数

    # rsync -v, --verbose 详细模式输出 -q, --quiet 精简输出模式 -c, --checksum 打开校验开关,强制对文件传输进行校验 -a, --archive 归档模式 ...

  10. erlang 开发建议

    * 确保没有任何编译警告 * Erlang中String采用list实现,32位系统中,其1个字符用8个字节的空间(4个保存value, 4个保存指针).因此string速度较慢,空间占用较大 * 在 ...