POJ2689:素数区间筛选
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 15820 | Accepted: 4202 |
Description
Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).
Input
Output
Sample Input
2 17
14 17
Sample Output
2,3 are closest, 7,11 are most distant.
There are no adjacent primes.
注意:L可能为1
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = ;
typedef long long LL;
LL l, u;
bool isPrime[MAXN], isSmallPrime[MAXN];
int prime[MAXN], len;
void prep()
{
memset(isPrime, true, sizeof(isPrime));
memset(isSmallPrime, true, sizeof(isSmallPrime));
isSmallPrime[] = false;
isSmallPrime[] = false;
len = ;
for(LL i = ; i * i <= u; i++)
{
if(isSmallPrime[i])
{
for(LL j = i + i; j * j <= u; j += i)
{
isSmallPrime[j] = false;
}
for(LL j = max(i + i, (l + i - ) / i * i); j <= u; j += i)
{
isPrime[j-l] = false;
}
}
}
for(LL i = l; i <= u; i++)
{
if(isPrime[i-l])
{
prime[len++] = i;
}
}
}
int main()
{
while(scanf("%I64d %I64d", &l, &u) != EOF)
{
if(l == ) l++;
prep();
if(len <= )
{
printf("There are no adjacent primes.\n");
continue;
}
int mind = 0x3f3f3f3f, a, b;
int maxd = , c, e;
for(int i = ; i < len; i++)
{
int d = prime[i] - prime[i-];
if(mind > d)
{
mind = d;
a = prime[i-];
b = prime[i];
}
if(maxd < d)
{
maxd = d;
c = prime[i-];
e = prime[i];
}
}
printf("%d,%d are closest, %d,%d are most distant.\n", a, b, c, e);
}
return ;
}
POJ2689:素数区间筛选的更多相关文章
- poj2689(素数区间筛法模板)
题目链接: http://poj.org/problem?id=2689 题意: 给出一个区间 [l, r] 求其中相邻的距离最近和最远的素数对 . 其中 1 <= l < r < ...
- POJ-2689-Prime Distance(素数区间筛法)
链接: https://vjudge.net/problem/POJ-2689 题意: The branch of mathematics called number theory is about ...
- HDOJ/HDU 2710 Max Factor(素数快速筛选~)
Problem Description To improve the organization of his farm, Farmer John labels each of his N (1 < ...
- POJ 2689 Prime Distance (素数筛选法,大区间筛选)
题意:给出一个区间[L,U],找出区间里相邻的距离最近的两个素数和距离最远的两个素数. 用素数筛选法.所有小于U的数,如果是合数,必定是某个因子(2到sqrt(U)间的素数)的倍数.由于sqrt(U) ...
- poj2689 Prime Distance(素数区间筛法)
题目链接:http://poj.org/problem?id=2689 题目大意:输入两个数L和U(1<=L<U<=2 147 483 647),要找出两个相邻素数C1和C2(L&l ...
- poj 2689 Prime Distance(区间筛选素数)
Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9944 Accepted: 2677 De ...
- HDU 2136 Largest prime factor(查找素数,筛选法)
题目梗概:求1000000以内任意数的最大质因数是第几个素数,其中 定义 1为第0个,2为第1个,以此类推. #include<string.h> #include<stdio.h& ...
- HDOJ(HDU) 2138 How many prime numbers(素数-快速筛选没用上、)
Problem Description Give you a lot of positive integers, just to find out how many prime numbers the ...
- hdu Diophantus of Alexandria(素数的筛选+分解)
Description Diophantus of Alexandria was an egypt mathematician living in Alexandria. He was one of ...
随机推荐
- java对IO的操作
import java.io.*; public class HelloWorld { //Main method. public static void main(String[] args) { ...
- Difference Between ZIP and GZIP
From: http://www.differencebetween.net/technology/difference-between-zip-and-gzip/ Summary: 1. GZIP ...
- hibernate 查询方式
1.对象导航查询 2.OID查询 3.hql查询 4.QBC查询 5.本地sql查询 一.对象导航查询 示例: 查询id=6的user对象的所有角色: 二.OID查询 实例查询id=6的user对象 ...
- android 中使用svg
http://www.see-source.com/blog/300000038/1189.html http://www.jianshu.com/p/30dfa5920658#
- R语言数据管理(二):模式与类
最常用的4种数据类型是数值型(numeric).字符型(character)(字符串).日期型(Date)或POSIXct(基于日期的).逻辑型(logical)(TRUE或FALSE). 变量中 ...
- 中国移动OneNet平台上传GPS数据JSON格式
最终目的输出 POST /devices/3225187/datapoints HTTP/1.1 api-key: R9xO5NZm6oVI4YBHvCPKEqtwYtMA Host: api.hec ...
- Scala window下安装
第一步:Java 设置 检测方法前文已说明,这里不再描述. 如果还为安装,可以参考我们的Java 开发环境配置. 接下来,我们可以从 Scala 官网地址 http://www.scala-lang. ...
- JAVA中最方便的Unicode转换方法
在命令行界面用native2ascii工具 1.将汉字转为Unicode: C:\Program Files\Java\jdk1.5.0_04\bin>native2ascii 测试 ...
- Android系统篇之—-编写简单的驱动程序并且将其编译到内核源码中【转】
本文转载自:大神 通过之前的一篇文章,我们了解了 Android中的Binder机制和远程服务调用 在这篇文章中主要介绍了Android中的应用在调用一些系统服务的时候的原理,那么接下来就继续来介绍一 ...
- shell 批量创建_备份 mysql 数据库 表
#!/bin/bash user=root password= socket=/var/lib/mysql/mysql.sock mycmd="mysql -u$user -p$passwo ...