bzoj 4500: 矩阵 差分约束系统
题目:
Description
有一个n*m的矩阵,初始每个格子的权值都为0,可以对矩阵执行两种操作:
- 选择一行, 该行每个格子的权值加1或减1。
- 选择一列, 该列每个格子的权值加1或减1。
现在有K个限制,每个限制为一个三元组(x,y,c),代表格子(x,y)权值等于c。
问是否存在一个操作序列,使得操作完后的矩阵满足所有的限制。如果存在输出”Yes”,否则输出”No”。
题解:
如果我们将所有的行作为变量\(x\),所有的列作为变量\(y\).
变量本身代表对这行(列)进行的操作数(x,y可以为负)
所以对于每一个三元限制我们可以列出方程\(x_i + y_i = c_i\)
然后我们移项得到\(x_i - c_i = y_i\)
这样我们可以依据这个等式列出两个不等式:
- $ x_i - c_i \leq y_i $
- $ y_i - (-c_i) \leq x_i $
然后我们建立差分约束系统,dfs判正环即可.
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
inline void read(int &x){
x=0;char ch;bool flag = false;
while(ch=getchar(),ch<'!');if(ch == '-') ch=getchar(),flag = true;
while(x=10*x+ch-'0',ch=getchar(),ch>'!');if(flag) x=-x;
}
const int maxn = 2048;
const int maxm = 1024*1024;
struct Edge{
int to,next,dis;
}G[maxm];
int head[maxn],cnt;
void add(int u,int v,int d){
G[++cnt].to = v;
G[cnt].next = head[u];
head[u] = cnt;
G[cnt].dis = d;
}
int dis[maxn];bool inq[maxn];
inline void init(){
memset(head,0,sizeof head);
memset(dis,-0x3f,sizeof dis);
memset(inq,false,sizeof inq);
cnt = 0;
}
#define v G[i].to
bool dfs(int u){
inq[u] = true;
for(int i = head[u];i;i=G[i].next){
if(dis[v] < dis[u] + G[i].dis){
dis[v] = dis[u] + G[i].dis;
if(inq[v]) return false;
if(!dfs(v)) return false;
}
}
inq[u] = false;
return true;
}
#undef v
int x[maxn],y[maxn],c[maxn];
int work(){
init();
int n,m,k;read(n);read(m);read(k);
for(int i=1;i<=k;++i) read(x[i]),read(y[i]),read(c[i]);
for(int i=1;i<=k;++i){
for(int j=1;j<=k;++j){
if(x[i] == x[j] && y[i] == y[j] && c[i] != c[j]) return puts("No");
if(x[i] == x[j] && y[i] == y[j]) continue;
if(x[i] == x[j] && c[i] - c[j] >= 0){
add(y[j]+n,y[i]+n,c[i]-c[j]);
add(y[i]+n,y[j]+n,c[j]-c[i]);
}
if(y[i] == y[j] && c[i] - c[j] >= 0){
add(x[j],x[i],c[i]-c[j]);
add(x[i],x[j],c[j]-c[i]);
}
}
}
for(int i=1;i<=n+m;++i) if(!dfs(i)) return puts("No");
return puts("Yes");
}
int main(){
int T;read(T);
while(T--) work();
getchar();getchar();
return 0;
}
bzoj 4500: 矩阵 差分约束系统的更多相关文章
- BZOJ 4500: 矩阵 差分约束
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=4500 题解: 从行向列建边,代表一个格子a[i][j],对每个顶点的所有操作可以合并在一 ...
- BZOJ.4500.矩阵(差分约束 SPFA判负环 / 带权并查集)
BZOJ 差分约束: 我是谁,差分约束是啥,这是哪 太真实了= = 插个广告:这里有差分约束详解. 记\(r_i\)为第\(i\)行整体加了多少的权值,\(c_i\)为第\(i\)列整体加了多少权值, ...
- BZOJ 4500: 矩阵
4500: 矩阵 Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 326 Solved: 182[Submit][Status][Discuss] De ...
- bzoj 4500: 矩阵【差分约束】
(x,y,z)表示格子(x,y)的值为z,也就是x行+y列加的次数等于z,相当于差分约束的条件,用dfs判断冲突即可. #include<iostream> #include<cst ...
- 【BZOJ 4500 矩阵】
Time Limit: 1 Sec Memory Limit: 256 MBSubmit: 390 Solved: 217[Submit][Status][Discuss] Description ...
- bzoj 4500 矩阵 题解
题意: 有一个 $ n * m $ 的矩阵,初始每个格子的权值都为 $ 0 $,可以对矩阵执行两种操作: 选择一行,该行每个格子的权值加1或减1. 选择一列,该列每个格子的权值加1或减1. 现在有 $ ...
- BZOJ 4500: 矩阵 带权并查集
这个思路挺巧妙的 ~ 定义一行/列的权值为操作后所整体增加的值. 那么,我们会有若干个 $a[x]+b[y]=c$ 的限制条件. 但是呢,我们发现符号是不能限制我们的(因为可加可减) 所以可以将限制条 ...
- BZOJ 2330: [SCOI2011]糖果 [差分约束系统] 【学习笔记】
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 5395 Solved: 1750[Submit][Status ...
- bzoj 2330 [SCOI2011]糖果(差分约束系统)
2330: [SCOI2011]糖果 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3574 Solved: 1077[Submit][Status ...
随机推荐
- KPI、KPA、OKR三者的区别
KPI.KPA或者OKR并不是水火不相容有你无我的概念,针对不对的业务状态.管理模式应该有所选择.以下是介绍它们之间的区别. 什么是KPI关键绩效指标 KPI(key performance indi ...
- ZOJ - 3537 Cake (凸包+区间DP+最优三角剖分)
Description You want to hold a party. Here's a polygon-shaped cake on the table. You'd like to cut t ...
- 17.Django表单验证
Django提供了3中方式来验证表单 官网文档:https://docs.djangoproject.com/en/1.9/ref/validators 1.表单字段验证器 a.引入:from dja ...
- You are using pip version 8.1.2, however version 9.0.1 is available.
[root@localhost ~]# pip install virtualenvmapperCollecting virtualenvmapper Could not find a versio ...
- ACM-最小生成树之继续畅通project——hdu1879
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/lx417147512/article/details/27092583 ************** ...
- python基础14 ---函数模块5(模块和包)
模块与包 一.模块 1.模块是怎么诞生的. 在计算机程序的开发过程中,随着程序代码越写越多,在一个文件里代码就会越来越长,越来越不容易维护.为了编写可维护的代码,我们把很多函数分组,分别放到 不同的文 ...
- CSS选择器(一)
一.CSS 元素选择器 最常见的 CSS 选择器是元素选择器.换句话说,文档的元素就是最基本的选择器. 如果设置 HTML 的样式,选择器通常将是某个 HTML 元素,比如 p.h1.em.a,甚至可 ...
- Java多线程系列 JUC线程池04 线程池原理解析(三)
转载 http://www.cnblogs.com/skywang12345/p/3509954.html https://blog.csdn.net/qq_22929803/article/det ...
- 【leetcode刷题笔记】Spiral Matrix
Given a matrix of m x n elements (m rows, n columns), return all elements of the matrix in spiral or ...
- 《python基础教程(第二版)》学习笔记 字典(第4章)
<python基础教程(第二版)>学习笔记 字典(第4章)创建字典:d={'key1':'value1','key2':'value2'}lst=[('key1','value1'),(' ...