bzoj 4407 于神之怒加强版 —— 反演+筛积性函数
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407
推导如这里:https://www.cnblogs.com/clrs97/p/5191506.html
然后发现 \( F(D) \) 是一个积性函数,可以筛质数的同时筛出来;
首先,单个质数 \( p \) 时只有 \( d=1 \) 和 \( d=p \) 两个因数,所以 \( F[p] = p^{k} - 1 \)
然后如果筛到互质的数,直接把 \( F() \) 相乘即可;
如果不互质,说明那个数已经有 \( p \) 这个质因子,考虑会在什么地方出现;
观察那个 \( \mu(d) \) 里面的 \( d \),不会有两个及以上相同的质因子,所以新加入的这个 \( p \) 不会在 \( d \) 中单独出现了;
所以所有的 \( \mu(d) \) 外面那个 \( (\frac{D}{d})^{k} \) 里面都会加入一个 \( p^{k} \),拿出来单独乘上即可;
注意分块的边界是 \( min(n,m) \),因为枚举的是 \( gcd \) ;
因为有负数,最后别忘了再模一下。
代码如下:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long ll;
int const xn=5e6+,mod=1e9+;
int n,m,k,pri[xn],cnt,f[xn],s[xn];
bool vis[xn];
ll pw(ll a,int b)
{
ll ret=;
for(;b;b>>=,a=(a*a)%mod)if(b&)ret=(ret*a)%mod;
return ret;
}
int upt(int x){while(x>=mod)x-=mod; while(x<)x+=mod; return x;}
void init()
{
int mx=5e6; f[]=;
for(int i=;i<=mx;i++)
{
if(!vis[i])pri[++cnt]=i,s[i]=pw(i,k),f[i]=upt(s[i]-);
for(int j=;j<=cnt&&(ll)i*pri[j]<=mx;j++)
{
vis[i*pri[j]]=;
if(i%pri[j])f[i*pri[j]]=(ll)f[i]*f[pri[j]]%mod;
else {f[i*pri[j]]=(ll)f[i]*s[pri[j]]%mod; break;}
}
}
for(int i=;i<=mx;i++)f[i]=upt(f[i]+f[i-]);
}
int main()
{
int T; scanf("%d%d",&T,&k); init();
while(T--)
{
scanf("%d%d",&n,&m); int mn=min(n,m),ans=;//
for(int i=,j;i<=mn;i=j+)
{
j=min(n/(n/i),m/(m/i));
ans=(ans+((ll)f[j]-f[i-])*(n/i)%mod*(m/i))%mod;
}
printf("%d\n",upt(ans));//-
}
return ;
}
bzoj 4407 于神之怒加强版 —— 反演+筛积性函数的更多相关文章
- bzoj 4407 于神之怒加强版——反演
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4407 \( ans = \sum\limits_{D=1}^{min(n,m)}\frac{ ...
- Divisor counting [线性筛积性函数]
Divisor counting 题目大意:定义f(n)表示整数n的约数个数.给出正整数n,求f(1)+f(2)+...+f(n)的值. 注释:1<=n<=1000,000 想法:我们再次 ...
- BZOJ 4407 于神之怒加强版 (莫比乌斯反演 + 分块)
4407: 于神之怒加强版 Time Limit: 80 Sec Memory Limit: 512 MBSubmit: 1067 Solved: 494[Submit][Status][Disc ...
- BZOJ.4407.于神之怒加强版(莫比乌斯反演)
题目链接 Description 求\[\sum_{i=1}^n\sum_{j=1}^m\gcd(i,j)^K\ \mod\ 10^9+7\] Solution 前面部分依旧套路. \[\begin{ ...
- ●BZOJ 4407 于神之怒加强版
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4407 题解: 莫比乌斯反演 直接套路化式子 $\begin{align*}ANS&= ...
- P6222 「简单题」加强版 莫比乌斯反演 线性筛积性函数
LINK:简单题 以前写过弱化版的 不过那个实现过于垃圾 少预处理了一个东西. 这里写一个实现比较精细了. 最后可推出式子:\(\sum_{T=1}^nsum(\frac{n}{T})\sum_{x| ...
- Mobius反演与积性函数前缀和演学习笔记 BZOJ 4176 Lucas的数论 SDOI 2015 约数个数和
下文中所有讨论都在数论函数范围内开展. 数论函数指的是定义域为正整数域, 且值域为复数域的函数. 数论意义下的和式处理技巧 因子 \[ \sum_{d | n} a_d = \sum_{d | n} ...
- bzoj 2693: jzptab 线性筛积性函数
2693: jzptab Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 444 Solved: 174[Submit][Status][Discus ...
- 莫比乌斯反演/线性筛/积性函数/杜教筛/min25筛 学习笔记
最近重新系统地学了下这几个知识点,以前没发现他们的联系,这次总结一下. 莫比乌斯反演入门:https://blog.csdn.net/litble/article/details/72804050 线 ...
随机推荐
- java排序(整理)
冒泡排序(面试都要问的算法) 一.基本思想:每次比较相邻的两个 元素,按需调整顺序 二.题目:要求将 12 35 99 18 76 这 5 个数进行从大到小排序 三.思路: (1)先比较第 1 ...
- mysql中的乐观锁和悲观锁
mysql中的乐观锁和悲观锁的简介以及如何简单运用. 关于mysql中的乐观锁和悲观锁面试的时候被问到的概率还是比较大的. mysql的悲观锁: 其实理解起来非常简单,当数据被外界修改持保守态度,包括 ...
- Python高级入门01-property
JAVA中存在对变量 私有化,公开,保护... 私有化时候,需要提供一个公开的get 和 set方法对外公开,让别人进行调用 python中同样存在 私有化变量定义是__是这个双下划线,eg:_ ...
- python数据分析之:数据聚合与分组运算
在数据库中,我们可以对数据进行分类,聚合运算.例如groupby操作.在pandas中同样也有类似的功能.通过这些聚合,分组操作,我们可以很容易的对数据进行转换,清洗,运算.比如如下图,首先通过不同的 ...
- SSAS(SQL Server 分析服务)、***S(SQL Server报表服务)、SSIS(SQL Server集成服务)
一.数据仓库入门 实验手册 1. 创建数据源 http://jimshu.blog.51cto.com/3171847/13366622. 创建数据源视图 http://jimshu.blog.51 ...
- 爬虫-【selenium—Webdriver元素定位的八种常用方式
在使用selenium webdriver进行元素定位时,通常使用findElement或findElements方法结合By类返回的元素句柄来定位元素.其中By类的常用定位方式共八种,现分别介绍如下 ...
- 关于align-items和align-content的区别和使用场景
最近在研究flex布局,容器中有两个属性,是用来定义crossAxis测轴排列方式的.一开始接触align-items还可以理解感觉不难,后来看到align-content就感觉有点混淆了,特开一篇博 ...
- Iptalbes练习题(二)
接着上节,上节课,基本功能设置后,现在我们telnet本机一下,发现问题: [root@test1 ~]# telnet Trying 127.0.0.1... telnet: connect to ...
- Linux中查找文件和文件内容的常用命令
一.whereis <程序名称> 查找软件的安装路径-b 只查找二进制文件 -m 只查找帮助文件-s 只查找源代码-u 排除指定类型文件-f 只显示文件名-B <目录> 在指定 ...
- POJ - 3414 Pots 【BFS】
题目链接 http://poj.org/problem?id=3414 题意 给出两个杯子 容量分别为 A B 然后给出C 是目标容量 有三种操作 1 将一个杯子装满 2.将一个杯子全都倒掉 3.将一 ...