Heine-Borel定理
前:开始学数学。。来写写理解和补充吧。。
书:M.A.Armstrong著《Basic Topology》
Heine-Borel定理:实轴上闭区间是紧集。
证法(1)延伸法:
思想 闭区间S=[a,b]内上升点列在S内有极限点;我们考虑被有限个开集覆盖的点的上确界q.由于q in S,存在开集t覆盖q的一个邻域,若q < b则存在点p > q in t也可以被有限个点覆盖,则q=b,同时说明S是紧的.
(2)细分法:
反证,我们二分区间。假设S=[a,b]非紧,取它的一个开覆盖P,那么[a,(a+b)/2]与[(a+b)/2,b]中必有无法有限P覆盖的,递归下去做我们可以得到一系列非紧集序列S1>S2>S3>S4>...,每个的区间长度是原先的一半。这个非紧集序列收敛于一点q,存在e in P使q in e,这样存在U(q,eps) subst e,而我们知道这个区间长度可以无限小,显然若是小于eps则这个区间被这个开集覆盖,和假设矛盾,则S是紧集。
Heine-Borel定理的更多相关文章
- 【HDU 3037】Saving Beans Lucas定理模板
http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...
- Mittag-Leffler定理,Weierstrass因子分解定理和插值定理
Mittag-Leffler定理 设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...
- 【转】Polya定理
转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- poj1006Biorhythms(同余定理)
转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...
- CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)
Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...
- 大组合数:Lucas定理
最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...
- SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元
[题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...
- 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理
题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...
- HDU5795A Simple Nim SG定理
A Simple Nim Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
随机推荐
- Linux下常用压缩 解压命令与压缩比率对比
常用的格式有:tar, tar.gz(tgz), tar.bz2, 不同方式,压缩和解压方式所耗CPU时间和压缩比率也差异也比较大. 1. tar只是打包动作,相当于归档处理,不做压缩:解压也一样,只 ...
- 小游戏banner广告流量量主指引
小程序导航 https://wq.xmaht.top
- manjaro无法使用ifconfig查ip
manjaro中自带的查看网络的命令是: ip addr 可以了解一下ip命令都有哪些功能 如果还是想要 ifconfig 需要安装net-tools 安装命令: sudo pacman -S net ...
- [Uva11178]Morley's Theorem(计算几何)
Description 题目链接 Solution 计算几何入门题 只要求出三角形DEF的一个点就能推出其他两个点 把一条边往内旋转a/3度得到一条射线,再做一条交点就是了 Code #include ...
- Python logging 模块简介
Table of Contents 1. Logging 模块 1.1. 简介 1.2. 简单输出日志 1.3. 输入日志到文件 1.4. 几个基本概念 1.4.1. loggers 1.4.2. h ...
- 11,nginx入门与实战
网站服务 想必我们大多数人都是通过访问网站而开始接触互联网的吧.我们平时访问的网站服务 就是 Web 网络服务,一般是指允许用户通过浏览器访问到互联网中各种资源的服务. Web 网络服务是一种被动 ...
- 缓存(CDN缓存,浏览器(客户端)缓存)
1.什么是缓存? 缓存是一种数据结构,用于快速查找以及执行的操作结果.因此,如果一个操作执行起来很慢,对于常用的输入数据就可以将操作的结果缓存,并在下次调用该操作时使用缓存的数据. 缓存是一个到处都存 ...
- linux下vi的复制,黏贴,删除,撤销,跳转等命令-费元星
前言 在嵌入式linux开发中,进行需要修改一下配置文件之类的,必须使用vi,因此,熟悉 vi 的一些基本操作,有助于提高工作效率. 一,模式vi编辑器有3种模式:命令模式.输入模式.末行模式. ...
- js valueOf和toString方法
JavaScript原生提供一个Object对象,所有其他对象都继承自这个对象,Object对象有valueOf和valueOf方法,所以所有JS数据类型都继承了这两种方法. valueOf:返回 ...
- jeakins用户配置
进入jeakins:系统管理-全局安全设置 如果有多个用户视情况而定进行权限配置