前:开始学数学。。来写写理解和补充吧。。
书:M.A.Armstrong著《Basic Topology》
Heine-Borel定理:实轴上闭区间是紧集。

证法(1)延伸法:

思想 闭区间S=[a,b]内上升点列在S内有极限点;我们考虑被有限个开集覆盖的点的上确界q.由于q in S,存在开集t覆盖q的一个邻域,若q < b则存在点p > q in t也可以被有限个点覆盖,则q=b,同时说明S是紧的.

(2)细分法:

反证,我们二分区间。假设S=[a,b]非紧,取它的一个开覆盖P,那么[a,(a+b)/2]与[(a+b)/2,b]中必有无法有限P覆盖的,递归下去做我们可以得到一系列非紧集序列S1>S2>S3>S4>...,每个的区间长度是原先的一半。这个非紧集序列收敛于一点q,存在e in P使q in e,这样存在U(q,eps) subst e,而我们知道这个区间长度可以无限小,显然若是小于eps则这个区间被这个开集覆盖,和假设矛盾,则S是紧集。

Heine-Borel定理的更多相关文章

  1. 【HDU 3037】Saving Beans Lucas定理模板

    http://acm.hdu.edu.cn/showproblem.php?pid=3037 Lucas定理模板. 现在才写,noip滚粗前兆QAQ #include<cstdio> #i ...

  2. Mittag-Leffler定理,Weierstrass因子分解定理和插值定理

    Mittag-Leffler定理    设$D\subset\mathbb C$为区域,而$\{a_{n}\}$为$D$中互不相同且无极限点的点列,那么对于任意给定的一列自然数$\{k_{n}\}$, ...

  3. 【转】Polya定理

    转自:http://endlesscount.blog.163.com/blog/static/82119787201221324524202/ Polya定理 首先记Sn为有前n个正整数组成的集合, ...

  4. hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)

    题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3.                  ...

  5. poj1006Biorhythms(同余定理)

    转自:http://blog.csdn.net/dongfengkuayue/article/details/6461298 本文转自head for better博客,版权归其所有,代码系本人自己编 ...

  6. CF451E Devu and Flowers (隔板法 容斥原理 Lucas定理 求逆元)

    Codeforces Round #258 (Div. 2) Devu and Flowers E. Devu and Flowers time limit per test 4 seconds me ...

  7. 大组合数:Lucas定理

    最近碰到一题,问你求mod (p1*p2*p3*……*pl) ,其中n和m数据范围是1~1e18 , l ≤10 , pi ≤ 1e5为不同的质数,并保证M=p1*p2*p3*……*pl ≤ 1e18 ...

  8. SPOJ HIGH Highways ——Matrix-Tree定理 高斯消元

    [题目分析] Matrix-Tree定理+高斯消元 求矩阵行列式的值,就可以得到生成树的个数. 至于证明,可以去看Vflea King(炸树狂魔)的博客 [代码] #include <cmath ...

  9. 洛谷 P2735 电网 Electric Fences Label:计算几何--皮克定理

    题目描述 在本题中,格点是指横纵坐标皆为整数的点. 为了圈养他的牛,农夫约翰(Farmer John)建造了一个三角形的电网.他从原点(0,0)牵出一根通电的电线,连接格点(n,m)(0<=n& ...

  10. HDU5795A Simple Nim SG定理

    A Simple Nim Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. struts2之标签库

    使用Struts2标签的准备工作: 导入Struts2标签库,该标签定义文件位于 struts2-core-2.3.16.3.jar 的 METE-INF下的struts-tag.tld文件. < ...

  2. phpmailer类的再封装

    email <?php use PHPMailer\PHPMailer\PHPMailer; class Email { const SMTPDebug = 2; const HOST = 's ...

  3. JQ常用方法(哈哈)

    1ajax请求 $(function(){   $("#send").click(function(){     $.ajax({     type:"get" ...

  4. form submit 的callback方法

    参考:http://hayageek.com/jquery-ajax-form-submit/ form的submit方法返回数据处理. 普通的form: $("#ajaxform" ...

  5. python3 练习题100例 (二十)

    #!/usr/bin/env python3# -*- coding: utf-8 -*-"""练习二十:判断一个年份是否是闰年公历闰年计算方法:1.普通年能被4整除且不 ...

  6. PHP.31-TP框架商城应用实例-后台7-商品会员修改-页面优化,多表数据更新

    商品表修改功能 1.页面优化,类似添加页面 <layout name="layout" /> <div class="tab-div"> ...

  7. 1 HTML + CSS

    1.HTML的基础用法 2.标签的嵌套 3.常见的网页结构 header content footer

  8. Android Stadio 导入moudle 不显示

    Android Stadio 导入moudle 不显示,moudle 里面的java类也没有识别,只当是普通的txt文件. 后来,我发现,每个moudle 都有一个.iml 文件~ 然后我就随便翻翻配 ...

  9. Hadoop 原理总结

    Hadoop 原理总结   一.Hadoop技术原理 Hdfs主要模块:NameNode.DataNode Yarn主要模块:ResourceManager.NodeManager 常用命令: 1)用 ...

  10. oracle集群部署相关文章

    1. Oracle数据库HA架构方案介绍:http://blog.sina.com.cn/s/blog_7273b6cc0100p0sr.html 2.Oracle 集群概念和原理