Understanding Memory Technology Devices in Embedded Linux
转:
NAND Chip Drivers
NAND technology users such as USB pen drives, DOMs, Compact Flash memory, and SD/MMC cards emulate standard storage interfaces such as SCSI or IDE over NAND flash, so you don't need to develop NAND drivers to communicate with them.5 On-board NAND flash chips need special drivers, however, and are the topic of this section.
As you learned previously in this chapter, NAND flash chips, unlike their NOR counterparts, are not connected to the CPU via data and address lines. They interface to the CPU through special electronics called a NAND flash controller that is part of many embedded processors. To read data from NAND flash, the CPU issues an appropriate read command to the NAND controller. The controller transfers data from the requested flash location to an internal RAM memory, also part of the controller. The data transfer is done in units of the flash chip's page size (for example, 2KB). In general, the denser the flash chip, the larger is its page size. Note that the page size is different from the flash chip's block size, which is the minimum erasable flash memory unit (for example, 16KB). After the transfer operation completes, the CPU reads the requested NAND contents from the internal RAM. Writes to NAND flash are done similarly, except that the controller transfers data from the internal RAM to flash. The connection diagram of NAND flash memory on an embedded device is shown in Figure 17.3.

Figure 17.3 NAND flash connection.
Because of this unconventional mode of addressing, you need special drivers to work with NAND storage. MTD provides such drivers to manage NAND-resident data. If you are using a supported chip, you have to enable only the appropriate low-level MTD NAND driver. If you are writing a NAND flash driver, however, you need to explore two datasheets: the NAND flash controller and the NAND flash chip.
NAND flash chips do not support automatic configuration using protocols such as CFI. You have to manually inform MTD about the properties of your NAND chip by adding an entry to thenand_flash_ids[] table defined in drivers/mtd/nand/nand_ids.c. Each entry in the table consists of an identifier name, the device ID, page size, erase block size, chip size, and options such as the bus width.
There is another characteristic that goes hand in hand with NAND memory. NAND flash chips, unlike NOR chips, are not faultless. It's normal to have some problem bits and bad blocks scattered across NAND flash regions. To handle this, NAND devices associate a spare area with each flash page (for example, 64 bytes of spare area for each 2KB data page). The spare area contains out-of-band (OOB) information to help perform bad block management and error correction. The OOB area includes error correcting codes (ECCs) to implement error correction and detection. ECC algorithms correct single-bit errors and detect multibit errors. The nand_ecclayout structure defined ininclude/mtd/mtd-abi.h specifies the layout of the OOB spare area:
struct nand_ecclayout {
uint 32_t eccbytes;
uint32_t eccpos[64];
uint32_t oobavail;
struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES];
};
In this structure, eccbytes holds the number of OOB bytes that store ECC data, and eccpos is an array of offsets into the OOB area that contains the ECC data. oobfree records the unused bytes in the OOB area available to flash filesystems for storing flags such as clean markers that signal successful completion of erase operations.
Individual NAND drivers initialize their nand_ecclayout according to the chip's properties. Figure 17.4illustrates the layout of a NAND flash chip having a page size of 2KB. The OOB semantics used by the figure is the default for 2KB page-sized chips as defined in the generic NAND driver,drivers/mtd/nand/nand_base.c.

Figure 17.4 Layout of a NAND flash chip.
Often, the NAND controller performs error correction and detection in hardware by operating on the ECC fields in the OOB area. If your NAND controller does not support error management, however, you will need to get MTD to do that for you in software. The MTD nand_ecc driver (drivers/mtd/nand/nand_ecc.c) implements software ECC.
Figure 17.4 also shows OOB memory bytes that contain bad block markers. These markers are used to flag faulty flash blocks and are usually present in the OOB region belonging to the first page of each block. The position of the marker inside the OOB area depends on the properties of the chip. Bad block markers are either set at the factory during manufacture, or by software when it detects wear in a block. MTD implements bad block management in drivers/mtd/nand/nand_bbt.c.
The mtd_partition structure used in Listing 17.1 for the NOR flash in Figure 17.2 works for NAND memory, too. After you MTD-enable your NAND flash, you can access the constituent partitions using standard device nodes such as /dev/mtd/X and /dev/mtdblock/X. If you have a mix of NOR and NAND memories on your hardware, X can be either a NOR or a NAND partition. If you have a total of more than 32 flash partitions, accordingly change the value of MAX_MTD_DEVICES ininclude/linux/mtd/mtd.h.
To effectively make use of NAND storage, you need to use a filesystem tuned for NAND access, such as JFFS2 or YAFFS2, in tandem with the low-level NAND driver. We discuss these filesystems in the next section.
Understanding Memory Technology Devices in Embedded Linux的更多相关文章
- Linux MTD (Memory Technology Device) subsystem analysis -For Atheros char device
Linux MTD (Memory Technology Device) subsystem analysis For Atheros char device 读了Linux MTD 源代码分析 对这 ...
- (转)Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspectives
Understanding Memory in Deep Learning Systems: The Neuroscience, Psychology and Technology Perspecti ...
- 【转载】关于Embedded Linux启动的经典问题
转载自:http://linux.chinaunix.net/techdoc/install/2009/04/13/1107608.shtml 发信人: armlinux (armlinux), 信区 ...
- Understanding Memory Management(2)
Understanding Memory Management Memory management is the process of allocating new objects and remov ...
- Qt for Embedded Linux
1. Qt for Embedded Linux http://doc.qt.io/qt-5/embedded-linux.html 2. Installing Qt for Embedded Lin ...
- 构建自己的embedded linux系统
[教程]使用buildroot完全自定义自己的embedded linux系统(nand)http://www.eeboard.com/bbs/thread-38377-1-1.html [教程] [ ...
- [转]A Guide To using IMU (Accelerometer and Gyroscope Devices) in Embedded Applications.
原文地址http://www.starlino.com/imu_guide.html Introduction There’s now a FRENCH translation of this art ...
- Memory Leak Detection in Embedded Systems
One of the problems with developing embedded systems is the detection of memory leaks; I've found th ...
- How to Add Memory, vCPU, Hard Disk to Linux KVM Virtual Machine
ref: https://www.thegeekstuff.com/2015/02/add-memory-cpu-disk-to-kvm-vm/ In our previous article of ...
随机推荐
- lseek 与 ioctl
lseek : 每个打开的文件都记录着当前读写位置,打开文件时读写位置是0,表示文件开头,通常读写多少个字节就会将读写位置往后移多少个字节.但是有一个例外,如果以O_APPEND方式打开,每次写操作都 ...
- qemu中是怎么模拟的新的设备
kvm_cpu_exec 和demo中演示的一样
- [C语言]防止头文件和全局变量重复定义
昨天下午将全局变量定义在H文件中导致链接时提示变量在多个obj文件内重复. 解决办法如下: 将变量移入C文件中进行定义,然后在H文件中加入extern在变量之前. 这样当其它C文件引用该全局变量时 ...
- POJ 2074 | 线段相交
#include<cstdio> #include<algorithm> #include<cstring> #include<cmath> #defi ...
- UVA 11478(差分约束 + 二分)
题意: 给定一个有向图,每条边都有一个权值,每次你可以选择一个结点和一个整数的,把所有以v为终点的边的权值减去d, 把所有以v为起点的边的权值加上d 最后要让所有边的权的最小值非负且尽量大 代码 #i ...
- hdu 1142 最短路+记忆化
最短路+记忆化搜索HDU 1142 A Walk Through the Forest链接:http://acm.hdu.edu.cn/showproblem.php?pid=1142 > 题意 ...
- spring in action学习笔记十五:配置DispatcherServlet和ContextLoaderListener的几种方式。
在spring in action中论述了:DispatcherServlet和ContextLoaderListener的关系,简言之就是DispatcherServlet是用于加载web层的组件的 ...
- linux fg bg ctrl + z jobs & 等命令
fg.bg.jobs.&.ctrl + z都是跟系统任务有关的,虽然现在基本上不怎么需要用到这些命令,但学会了也是很实用的一.& 最经常被用到这个用在一个命令的最后,可以把这个命令放到 ...
- tips 前端 移动端 web iscroll 5 自译文档 api速查
iscroll 可以做的 1,模拟原生的ios 或者android等设备的元素滚动,app里的那种顺滑的滚动,仅仅使用一个轻量的js库实现(甚至更酷炫的视觉感受) 2,手机端流行的下拉刷新,ajax异 ...
- Vijos P1007 绕钉子的长绳子
绕钉子的长绳子 背景 平面上有N个圆柱形的大钉子,半径都为R,所有钉子组成一个凸多边形. 现在你要用一条绳子把这些钉子围起来,绳子直径忽略不计. 描述 求出绳子的长度 格式 输入格式 第1行两个数:整 ...