题目大意:
  一个$n\times m(n,m\leq400)$的网格图中,每个格子上放了两个三明治,摆放的方式分为'N'和'Z'两种。一个三明治可以被拿走当且仅当与该三明治的两条直角边相邻的三明治均被拿走或与该三明治斜边相邻的三明治被拿走。问对于每个格子,想要拿走这个格子中的所有三明治至少需要先拿走多少三明治。

思路:
  对于同一个格子,不难发现这一个格子中两个三明治接连被拿走一定是最优的。
  于是这题就和每个单独的三明治取走顺序没什么关系了,只和每个方格取走顺序及三明治的摆放方式有关。
  $O(n^2)$枚举每个格子$(x,y)$,假设它是因为$(x-1,y)$和$(x,y-1)$被取走后才被取走,我们可以$O(n^2)$DFS出最优情况下,取走每个格子之前一定要取走哪些格子。时间复杂度$O(n^4)$,bitset优化为$O(\frac{n^4}{\omega})$。
  不难发现,若$(x,y)$是因为$(x-1,y)$被取走才被取走的,$(x-1,y)$不可能因为$(x,y)$被取走才被取走。因此对于同一行的格子,我们可以让后面的DFS重复利用前面DFS出的信息。DFS是$O(n^2)$的,每一行要重新DFS,时间复杂度是$O(n^3)$。
  具体实现上,可以用$0\sim3$来表示不同的方向。若摆放方式为'N'的格子,一个直角边的方向为$d$,则另一个直角边的方向为$d\oplus3$;若摆放方式为'Z'的格子,一个直角边的方向为$d$,则另一个直角边的方向为$d\oplus1$。搜索时的一系列分类讨论可以通过简单的位运算实现。

 #include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
inline bool getblock() {
register char ch;
while(!isalpha(ch=getchar()));
return ch=='N';
}
const int N=,inf=0x7fffffff;
const int dx[]={,-,,},dy[]={-,,,};
bool a[N][N];
int n,m,f[N][N],ans[N][N],tmp,flag;
inline bool check(const int &x,const int &y) {
return x>=&&x<n&&y>=&&y<m;
}
void dfs(const int &x,const int &y,const int &d) {
if(!~f[x][y]) {
flag=true;
return;
}
if(f[x][y]) return;
tmp+=;
f[x][y]=-;
const int p=a[x][y]?:;
if(check(x-dx[d],y-dy[d])) dfs(x-dx[d],y-dy[d],d);
if(check(x-dx[d^p],y-dy[d^p])) dfs(x-dx[d^p],y-dy[d^p],d^p);
f[x][y]=;
}
int main() {
for(register int T=getint();T;T--) {
n=getint(),m=getint();
for(register int i=;i<n;i++) {
for(register int j=;j<m;j++) {
a[i][j]=getblock();
}
}
for(register int i=;i<n;i++) {
flag=tmp=;
for(register int i=;i<n;i++) {
for(register int j=;j<m;j++) {
f[i][j]=;
}
}
for(register int j=;j<m;j++) {
if(!flag) dfs(i,j,);
ans[i][j]=flag?inf:tmp;
}
flag=tmp=;
for(register int i=;i<n;i++) {
for(register int j=;j<m;j++) {
f[i][j]=;
}
}
for(register int j=m-;~j;j--) {
if(!flag) dfs(i,j,);
ans[i][j]=std::min(ans[i][j],flag?inf:tmp);
}
}
for(register int i=;i<n;i++) {
for(register int j=;j<m;j++) {
printf("%d%c",ans[i][j]!=inf?ans[i][j]:-," \n"[j==m-]);
}
}
}
return ;
}

[JOISC2016]サンドイッチ的更多相关文章

随机推荐

  1. 【转载】Unity3d UnityEditor编辑器定制和开发插件

    在阅读本教程之前,你需要对Unity的操作流程有一些基础的认识,并且最好了解内置的GUI系统如何使用. 如何让编辑器运行你的代码 Unity3D可以通过事件触发来执行你的编辑器代码,但是我们需要一些编 ...

  2. 孤荷凌寒自学python第二十天python的匿名函数与偏函数

    孤荷凌寒自学python第二十天python的匿名函数与偏函数 (完整学习过程屏幕记录视频地址在文末,手写笔记在文末) Python为使函数的使用更加方便高效,可以使用两种特殊的函数简化语句书写. 一 ...

  3. (原) Unreal搬山-引言(图多慎)

    @author:白袍小道 扯淡:(图多) 何为搬山,这里借了剑来少年郎一句.(若有同道中人,甚是开心,开心的很) 江湖岂能没前辈) (江湖很大,足够你浪) (刺客信条 \荒野 \神秘海域 \死亡空间 ...

  4. disable-network-config

    network: {config: disabled}

  5. 斐波那契数列的三种C++实现及时间复杂度分析

    本文介绍了斐波那契数列的三种C++实现并详细地分析了时间复杂度. 斐波那契数列定义:F(1)=1, F(2)=1, F(n)=F(n-1) + F(n-2) (n>2) 如何计算斐波那契数 F( ...

  6. Access连接字符串

    Access2007没有密码连接: <connectionStrings> <add name="myconn" connectionString="P ...

  7. 第一次使用iptables

    sudo iptables -A OUTPUT -m cgroup ! --cgroup 0x100001 -j DROP 第一次使用iptables就把电脑弄得上不了网了...... 下面这个地址讲 ...

  8. Java获取当前服务器IP实现

    package hope.ipaddress.demo; import java.net.InetAddress; import java.net.NetworkInterface; import j ...

  9. MPLAB® XC C编译器的Workstation License的获取及安装方法

    MPLAB®XC C编译器的Workstation License获取及安装方法如下:首先需要购买获得一个XC C编译器的激活码,然后到以下网页(http://www.microchip.com/rl ...

  10. [CTSC2017][bzoj4903] 吉夫特 [状压dp+Lucas定理]

    题面 传送门 思路 一句话题意: 给出一个长度为 n 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 a和 b (b 在 a 前面),$C_a^b mod 2=1$,答案 ...