题目大意:
  一个$n\times m(n,m\leq400)$的网格图中,每个格子上放了两个三明治,摆放的方式分为'N'和'Z'两种。一个三明治可以被拿走当且仅当与该三明治的两条直角边相邻的三明治均被拿走或与该三明治斜边相邻的三明治被拿走。问对于每个格子,想要拿走这个格子中的所有三明治至少需要先拿走多少三明治。

思路:
  对于同一个格子,不难发现这一个格子中两个三明治接连被拿走一定是最优的。
  于是这题就和每个单独的三明治取走顺序没什么关系了,只和每个方格取走顺序及三明治的摆放方式有关。
  $O(n^2)$枚举每个格子$(x,y)$,假设它是因为$(x-1,y)$和$(x,y-1)$被取走后才被取走,我们可以$O(n^2)$DFS出最优情况下,取走每个格子之前一定要取走哪些格子。时间复杂度$O(n^4)$,bitset优化为$O(\frac{n^4}{\omega})$。
  不难发现,若$(x,y)$是因为$(x-1,y)$被取走才被取走的,$(x-1,y)$不可能因为$(x,y)$被取走才被取走。因此对于同一行的格子,我们可以让后面的DFS重复利用前面DFS出的信息。DFS是$O(n^2)$的,每一行要重新DFS,时间复杂度是$O(n^3)$。
  具体实现上,可以用$0\sim3$来表示不同的方向。若摆放方式为'N'的格子,一个直角边的方向为$d$,则另一个直角边的方向为$d\oplus3$;若摆放方式为'Z'的格子,一个直角边的方向为$d$,则另一个直角边的方向为$d\oplus1$。搜索时的一系列分类讨论可以通过简单的位运算实现。

 #include<cstdio>
#include<cctype>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
inline bool getblock() {
register char ch;
while(!isalpha(ch=getchar()));
return ch=='N';
}
const int N=,inf=0x7fffffff;
const int dx[]={,-,,},dy[]={-,,,};
bool a[N][N];
int n,m,f[N][N],ans[N][N],tmp,flag;
inline bool check(const int &x,const int &y) {
return x>=&&x<n&&y>=&&y<m;
}
void dfs(const int &x,const int &y,const int &d) {
if(!~f[x][y]) {
flag=true;
return;
}
if(f[x][y]) return;
tmp+=;
f[x][y]=-;
const int p=a[x][y]?:;
if(check(x-dx[d],y-dy[d])) dfs(x-dx[d],y-dy[d],d);
if(check(x-dx[d^p],y-dy[d^p])) dfs(x-dx[d^p],y-dy[d^p],d^p);
f[x][y]=;
}
int main() {
for(register int T=getint();T;T--) {
n=getint(),m=getint();
for(register int i=;i<n;i++) {
for(register int j=;j<m;j++) {
a[i][j]=getblock();
}
}
for(register int i=;i<n;i++) {
flag=tmp=;
for(register int i=;i<n;i++) {
for(register int j=;j<m;j++) {
f[i][j]=;
}
}
for(register int j=;j<m;j++) {
if(!flag) dfs(i,j,);
ans[i][j]=flag?inf:tmp;
}
flag=tmp=;
for(register int i=;i<n;i++) {
for(register int j=;j<m;j++) {
f[i][j]=;
}
}
for(register int j=m-;~j;j--) {
if(!flag) dfs(i,j,);
ans[i][j]=std::min(ans[i][j],flag?inf:tmp);
}
}
for(register int i=;i<n;i++) {
for(register int j=;j<m;j++) {
printf("%d%c",ans[i][j]!=inf?ans[i][j]:-," \n"[j==m-]);
}
}
}
return ;
}

[JOISC2016]サンドイッチ的更多相关文章

随机推荐

  1. finally在return之后还是之前运行

    finally在运行前打印出来是return的数据,finally是最后修改的数据,如果finally存在对返回值的修改,则以finally修改的值为准. 综上所述,finally最后运行.

  2. PHP excel 设置参数

    $objPHPExcel->getActiveSheet()->getDefaultRowDimension()->setRowHeight(-1); <?php error_ ...

  3. (原)Skeletal With DirectX12

    @author: 白袍小道 @来源: Advanced Animation with DirectX, 游戏引擎架构         (暗影不解释连招)     引言: 3D模型动画的基本原理是让模型 ...

  4. cloud.cfg_for_ubuntu

    user: default disable_root: false preserve_hostname: false cloud_init_modules: - bootcmd - resizefs ...

  5. Small组件化重构安卓项目

    如果从一开始就没有设计好 后面项目业务比较大的时候很难掉头

  6. COMMIT和ROLLBACK的用法

    从功能上划分,SQL语言可以分为DDL,DML和DCL三大类. 1.DDL(Data Definition Language)  数据定义语言,用于定义和管理 SQL 数据库中的所有对象的语言 : C ...

  7. python完成留言板功能

    <!DOCTYPE html> <html lang="zh"> <head> <meta charset="utf-8&quo ...

  8. 第一次软件工程作业补充plus

    一.代码的coding地址:coding地址. 二.<构建之法>读后问题以及感言(补充): 1.对于7.3MSF团队模型,7.2.6保持敏捷,预期和适应变化,中的"我们是预期变化 ...

  9. LeetCode -- Valid Parenthese

    Question: Given a string containing just the characters '(', ')', '{', '}', '[' and ']', determine i ...

  10. [洛谷P4841]城市规划

    题目大意:求$n$个点的带标号的无向连通图的个数 题解:令$F(x)$为带标号无向连通图个数生成函数,$G(x)$为带标号无向图个数生成函数 那么$G(x) = \sum_{i=0}^{\infty} ...