最小生成树 (Minimum Spanning Tree,MST) --- Kruskal算法
本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html
引导问题:
假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路。这时,自然会考虑这样一个问题,如何在最省经费的前提下建立这个通信网。
基于问题所建立的定义:
可以用联通网来表示N个城市以及N个城市之间可能设置的连通线路,其中网的顶点表示城市,边表示两城市之间的线路,赋予边的权值表示相应的代价。对于N个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。现在,要选择这样一颗生成树,也就是使总的耗费最少,这个问题就是构造连通网的的最小代价生成树的问题,即最小生成树问题。一颗生成树的代价就是树上各边的代价之和。
算法:
假设;连通网N = (V, {E}),则令最小生成树的初始状态为只有N个顶点而无边的非连通图T = (V, {}),图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点落在不同的连通分量上,则将该边加入到T中,否则舍去此边,选择下一条代价最小的边。以此类推,直至所有顶点都在同一个连通分量上为止。
时间复杂度:O(ElogE),适合点多边少的稀疏图。
用图来描述:
初始图 N 初始图 T

求此图的最小生成树。
第一步:先给这些边排序。

然后选择第(1)条边V1 -- V4,第一条边的两端属于两个连通分量,所以可以加入 T 中

继续选择第(2)条边V5 -- V3,第二条边的两端也属于两个连通分量,所以也可以加入 T 中

选择第(3)条边V4 -- V6,第三条边的两端也属于两个连通分量,加入 T 中

选择第四条边V1 -- V7,同样属于两个连通分量,加入 T 中

选择第五条边,V2 -- V5,也属于两个连通分量,加入 T 中

选择第六条边V2 -- V3后会变成这样

很明显,第六条边的两端是属于一个连通分量的,所以舍弃继续选择第七条边V5 -- V6

同样,第七条边的两端属于同一个连通分量,所以舍弃,选择第八条变条边V2 -- V4

和上面两条边的状况一样,所以继续舍弃,选择第九条边,V5 -- V7

到此为止,所有的点都被连通到了一起,图中仅存在一个连通分量,算法停止,T 中所选择的边和原先的点构成的图就是要找的最小生成树。
具体实现:
判断是否属于一个连通分量可以用并查集实现。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
using namespace std; const int MAXN = 2e3+ ;
int pre[MAXN];
int m,n; int Find(int x) //并查集
{
return x == pre[x] ? x :(pre[x] = Find(pre[x]));
} struct Node //储存数据
{
int u, v, w;
}cy[]; int mycmp(Node a,Node b)
{
return a.w < b.w;
} void mst()
{
for(int i = ; i < ; i++)
pre[i] = i;
} int kru()
{
int ans = ;
int cnt = ;
sort(cy + , cy + n + , mycmp); //对边进行升序排序
for(int i = ; i <= n; i++) //从最小的那条边开始寻找
{
int fv = Find(cy[i].v);
int fu = Find(cy[i].u);
if(fv != fu) //如果不属于同一个连通分量就把当前这条比较小的边加进去
{
pre[fv] = fu;
ans += cy[i].w;
cnt ++;
}
if(cnt == m -) //构成了最小生成树
{
return ans;
break;
}
}
return -;
} int main()
{
//freopen("in.cpp","r",stdin);
while(~scanf("%d%d",&n,&m) && n)
{
mst();
for(int i = ; i <= n; i++)
scanf("%d%d%d",&cy[i].u, &cy[i].v, &cy[i].w);
int ans = kru();
if(ans != -)
printf("%d\n",ans);
else
printf("?\n");
}
return ;
}
最小生成树 (Minimum Spanning Tree,MST) --- Kruskal算法的更多相关文章
- 最小生成树 (Minimum Spanning Tree,MST) --- Prim算法
本文链接:http://www.cnblogs.com/Ash-ly/p/5409904.html 普瑞姆(Prim)算法: 假设N = (V, {E})是连通网,TE是N上最小生成树边的集合,U是是 ...
- 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集
最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...
- 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解
本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...
- Prim算法、Kruskal算法和最小生成树 | Minimum Spanning Tree
graph to tree非常有趣! 距离的度量会极大地影响后续的分析,欧式距离会放大差异,相关性会缩小差异,导致某些细胞群分不开. 先直观看一下,第一个是Prim,第二个是Kruskal.但是肯定都 ...
- 算法练习:最小生成树 (Minimum Spanning Tree)
(注:此贴是为了回答同事提出的一个问题而匆匆写就,算法代码只求得出答案为目的,效率方面还有很大的改进空间) 最小生成树是指对于给定的带权无向图,需要生成一个总权重最小的连通图.其问题描述及算法可以详见 ...
- Minimum Spanning Tree.prim/kruskal(并查集)
开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可) prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图 #include< ...
- UVAlive3662 Another Minimum Spanning Tree 莫队算法
就是莫队的模板题 /* Memory: 0 KB Time: 1663 MS Language: C++11 4.8.2 Result: Accepted */ #include<cstdio& ...
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
- 说说最小生成树(Minimum Spanning Tree)
minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...
随机推荐
- 剑指Offer - 九度1283 - 第一个只出现一次的字符
剑指Offer - 九度1283 - 第一个只出现一次的字符2013-11-21 21:13 题目描述: 在一个字符串(1<=字符串长度<=10000,全部由大写字母组成)中找到第一个只出 ...
- python之urllib.request.urlopen(url)报错urllib.error.HTTPError: HTTP Error 403: Forbidden处理及引申浏览器User Agent处理
最近在跟着院内大神学习python的过程中,发现使用urllib.request.urlopen(url)请求服务器是报错: 在园子里找原因,发现原因为: 只会收到一个单纯的对于该页面访问的请求,但是 ...
- Oracle 学习----:查看当前时间与Sqlserver语句不一样了
oracle:select sysdate from dual sqlserver: select getdate() ---------------------试试这个--------------- ...
- ctags+cscope替换sourceinsight
背景 windows环境开发+linux交叉编译的开发模式,代码阅读和编写都用的source-insight. 除了检索,跳转,工程构建等方面,sourceinsight自带了一些宏语言,可以轻松实现 ...
- mongo数据库 启动报错
报错信息如下: [root@166 bin]# mongoMongoDB shell version v3.4.6-22-ga109a23connecting to: mongodb://127.0. ...
- JavaWeb笔记(六)MVC与三层架构
MVC M Model 模型 JavaBean 完成具体的业务操作,如:查询数据库,封装对象 V View 视图 JSP 展示数据 C Controller 控制器 Servlet 获取用户输入,调用 ...
- poj 3436 网络流构图经典
ACM Computer Factory Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 6012 Accepted: 2 ...
- Hash表模板
namespace Hash { ; ; struct adj { ll nxt,v,num,val; }e[N]; ll head[H],ecnt=; void init() { ecnt=; me ...
- 手把手搭建一个完整的javaweb项目
手把手搭建一个完整的javaweb项目 本案例使用Servlet+jsp制作,用MyEclipse和Mysql数据库进行搭建,详细介绍了搭建过程及知识点. 下载地址:http://download.c ...
- java算法(二) 快速排序
快速排序是一种交换排序. 快速排序由C. A. R. Hoare在1962年提出. 它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分:分割点左边都是比它小的数,右边都是比它大的数. 然后再 ...