本文链接:http://www.cnblogs.com/Ash-ly/p/5409265.html

引导问题:

  假设要在N个城市之间建立通信联络网,则连通N个城市只需要N - 1条线路。这时,自然会考虑这样一个问题,如何在最省经费的前提下建立这个通信网。

基于问题所建立的定义:

  可以用联通网来表示N个城市以及N个城市之间可能设置的连通线路,其中网的顶点表示城市,边表示两城市之间的线路,赋予边的权值表示相应的代价。对于N个顶点的连通网可以建立许多不同的生成树,每一棵生成树都可以是一个通信网。现在,要选择这样一颗生成树,也就是使总的耗费最少,这个问题就是构造连通网的的最小代价生成树的问题,即最小生成树问题。一颗生成树的代价就是树上各边的代价之和。

算法:

  假设;连通网N = (V, {E}),则令最小生成树的初始状态为只有N个顶点而无边的非连通图T = (V, {}),图中每个顶点自成一个连通分量。在E中选择代价最小的边,若该边依附的顶点落在不同的连通分量上,则将该边加入到T中,否则舍去此边,选择下一条代价最小的边。以此类推,直至所有顶点都在同一个连通分量上为止。

  时间复杂度:O(ElogE),适合点多边少的稀疏图。

用图来描述:

初始图 N                      初始图 T

   

求此图的最小生成树。

第一步:先给这些边排序。

然后选择第(1)条边V1 -- V4,第一条边的两端属于两个连通分量,所以可以加入 T 中

继续选择第(2)条边V5 -- V3,第二条边的两端也属于两个连通分量,所以也可以加入 T 中

选择第(3)条边V4 -- V6,第三条边的两端也属于两个连通分量,加入 T 中

选择第四条边V1 -- V7,同样属于两个连通分量,加入 T 中

选择第五条边,V2 -- V5,也属于两个连通分量,加入 T 中

选择第六条边V2 -- V3后会变成这样

很明显,第六条边的两端是属于一个连通分量的,所以舍弃继续选择第七条边V5 -- V6

同样,第七条边的两端属于同一个连通分量,所以舍弃,选择第八条变条边V2 -- V4

和上面两条边的状况一样,所以继续舍弃,选择第九条边,V5 -- V7

到此为止,所有的点都被连通到了一起,图中仅存在一个连通分量,算法停止,T 中所选择的边和原先的点构成的图就是要找的最小生成树。

具体实现:

  判断是否属于一个连通分量可以用并查集实现。

代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <cctype>
#include <algorithm>
#include <queue>
#include <stack>
#include <map>
#include <set>
using namespace std; const int MAXN = 2e3+ ;
int pre[MAXN];
int m,n; int Find(int x) //并查集
{
return x == pre[x] ? x :(pre[x] = Find(pre[x]));
} struct Node //储存数据
{
int u, v, w;
}cy[]; int mycmp(Node a,Node b)
{
return a.w < b.w;
} void mst()
{
for(int i = ; i < ; i++)
pre[i] = i;
} int kru()
{
int ans = ;
int cnt = ;
sort(cy + , cy + n + , mycmp); //对边进行升序排序
for(int i = ; i <= n; i++) //从最小的那条边开始寻找
{
int fv = Find(cy[i].v);
int fu = Find(cy[i].u);
if(fv != fu) //如果不属于同一个连通分量就把当前这条比较小的边加进去
{
pre[fv] = fu;
ans += cy[i].w;
cnt ++;
}
if(cnt == m -) //构成了最小生成树
{
return ans;
break;
}
}
return -;
} int main()
{
//freopen("in.cpp","r",stdin);
while(~scanf("%d%d",&n,&m) && n)
{
mst();
for(int i = ; i <= n; i++)
scanf("%d%d%d",&cy[i].u, &cy[i].v, &cy[i].w);
int ans = kru();
if(ans != -)
printf("%d\n",ans);
else
printf("?\n");
}
return ;
}

最小生成树 (Minimum Spanning Tree,MST) --- Kruskal算法的更多相关文章

  1. 最小生成树 (Minimum Spanning Tree,MST) --- Prim算法

    本文链接:http://www.cnblogs.com/Ash-ly/p/5409904.html 普瑞姆(Prim)算法: 假设N = (V, {E})是连通网,TE是N上最小生成树边的集合,U是是 ...

  2. 最小生成树(Minimum Spanning Tree)——Prim算法与Kruskal算法+并查集

    最小生成树——Minimum Spanning Tree,是图论中比较重要的模型,通常用于解决实际生活中的路径代价最小一类的问题.我们首先用通俗的语言解释它的定义: 对于有n个节点的有权无向连通图,寻 ...

  3. 【算法】关于图论中的最小生成树(Minimum Spanning Tree)详解

    本节纲要 什么是图(network) 什么是最小生成树 (minimum spanning tree) 最小生成树的算法 什么是图(network)? 这里的图当然不是我们日常说的图片或者地图.通常情 ...

  4. Prim算法、Kruskal算法和最小生成树 | Minimum Spanning Tree

    graph to tree非常有趣! 距离的度量会极大地影响后续的分析,欧式距离会放大差异,相关性会缩小差异,导致某些细胞群分不开. 先直观看一下,第一个是Prim,第二个是Kruskal.但是肯定都 ...

  5. 算法练习:最小生成树 (Minimum Spanning Tree)

    (注:此贴是为了回答同事提出的一个问题而匆匆写就,算法代码只求得出答案为目的,效率方面还有很大的改进空间) 最小生成树是指对于给定的带权无向图,需要生成一个总权重最小的连通图.其问题描述及算法可以详见 ...

  6. Minimum Spanning Tree.prim/kruskal(并查集)

    开始了最小生成树,以简单应用为例hoj1323,1232(求连通分支数,直接并查集即可) prim(n*n) 一般用于稠密图,而Kruskal(m*log(m))用于系稀疏图 #include< ...

  7. UVAlive3662 Another Minimum Spanning Tree 莫队算法

    就是莫队的模板题 /* Memory: 0 KB Time: 1663 MS Language: C++11 4.8.2 Result: Accepted */ #include<cstdio& ...

  8. MST(Kruskal’s Minimum Spanning Tree Algorithm)

    You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...

  9. 说说最小生成树(Minimum Spanning Tree)

    minimum spanning tree(MST) 最小生成树是连通无向带权图的一个子图,要求 能够连接图中的所有顶点.无环.路径的权重和为所有路径中最小的. graph-cut 对图的一个切割或者 ...

随机推荐

  1. 一个初学者的辛酸路程-基于Django写BBS项目

    前言 基于Django的学习 详情 登录界面 找个模板 http://v3.bootcss.com/examples/signin/ 右键,检查源码     函数 def login(request) ...

  2. NOIP2018 集训(一)

    A题 Simple 时间限制:1000ms | 空间限制:256MB 问题描述 对于给定正整数\(n,m\),我们称正整数\(c\)为好的,当且仅当存在非负整数\(x,y\)使得\(n×x+m×y=c ...

  3. Spring Boot多数据源配置(一)durid、mysql、jpa整合

    目前在做一个统计项目.需要多数据源整合,其中包括mysql和mongo.本节先讲mysql.durid.jpa与spring-boot的整合. 引入Durid包 <dependency> ...

  4. ssh.sh_for_ubuntu1404

    #!/bin/bash sed -i 's/PermitRootLogin without-password/PermitRootLogin yes/g' /etc/ssh/sshd_config s ...

  5. Python 黑魔法(持续收录)

    Python 黑魔法(持续收录) zip 对矩阵进行转置 a = [[1, 2, 3], [4, 5, 6]] print(list(map(list, zip(*a)))) zip 反转字典 a = ...

  6. python作业:购物车(第二周)

    一.作业需求: 1.启动程序后,输入用户名密码后,如果是第一次登录,让用户输入工资,然后打印商品列表 2.允许用户根据商品编号购买商品 3.用户选择商品后,检测余额是否够,够就直接扣款,不够就提醒 4 ...

  7. HDU 4760 Good Firewall ( Trie树 )

    一开始看的时候就想歪了,比赛的时候一直在YY线段树区间覆盖,然后纠结节点数太多开不下怎么办啊啊啊啊…… 然后昨天吃饭的时候也在纠结这到底是个啥题,后来发现公共前缀->前缀??!!!!->这 ...

  8. [洛谷P4925][1007]Scarlet的字符串不可能这么可爱

    题目大意:问字符集大小为$k$,长度为$L$的字符串,且没有长度超过$1$的回文段的个数.规定第$s(若为0则无限制)$位为$w$. 题解:懒得写了,根据是否有限制分类讨论 卡点:中途有个地方忘记取模 ...

  9. [bzoj4712] 洪水 [树链剖分+线段树+dp]

    题面 传送门 思路 DP方程 首先,这题如果没有修改操作就是sb题,dp方程如下 $dp[u]=max(v[u],max(dp[v]))$,其中$v$是$u$的儿子 我们令$g[u]=max(dp[v ...

  10. A Dangerous Maze (II) LightOJ - 1395(概率dp)

    A Dangerous Maze (II) LightOJ - 1395(概率dp) 这题是Light Oj 1027的加强版,1027那道是无记忆的. 题意: 有n扇门,每次你可以选择其中一扇.xi ...