题目描述

小B有一个序列,包含N个1~K之间的整数。他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数。小B请你帮助他回答询问。

输入输出格式

输入格式:

第一行,三个整数N、M、K。

第二行,N个整数,表示小B的序列。

接下来的M行,每行两个整数L、R。

输出格式:

M行,每行一个整数,其中第i行的整数表示第i个询问的答案。

输入输出样例

输入样例#1:
复制

6 4 3
1 3 2 1 1 3
1 4
2 6
3 5
5 6
输出样例#1: 复制

6
9
5
2

说明

对于全部的数据,1<=N、M、K<=50000

莫队即可解决;

可参考[国家集训队]小Z的袜子

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-3
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii;
inline ll rd() {
ll x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
ll sqr(ll x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ ll ans;
int n, m;
int c[maxn];
int pos[maxn];
ll sum[maxn];
ll Ans[maxn];
struct node {
int l, r, id; }nd[maxn]; bool cmpid(node a, node b) {
return a.id < b.id;
} bool cmp(node a, node b) {
if (pos[a.l] == pos[b.l])return a.r < b.r;
return a.l < b.l;
} void init() {
rdint(n); rdint(m); int K; rdint(K);
for (int i = 1; i <= n; i++)rdint(c[i]);
int blok = sqrt(n);
for (int i = 1; i <= n; i++)pos[i] = (i - 1) / blok + 1;
for (int i = 1; i <= m; i++) {
rdint(nd[i].l); rdint(nd[i].r);
nd[i].id = i;
} } void add(int p, int val) {
ans -= sqr(sum[c[p]]);
sum[c[p]] += (ll)val;
ans += sqr(sum[c[p]]);
} void sol() {
for (int i = 1, l = 1, r = 0; i <= m; i++) {
for (; r < nd[i].r; r++)add(r + 1, 1);
for (; r > nd[i].r; r--)add(r, -1);
for (; l < nd[i].l; l++)add(l, -1);
for (; l > nd[i].l; l--)add(l - 1, 1);
Ans[nd[i].id] = ans;
}
} int main() {
//ios::sync_with_stdio(0);
init();
sort(nd + 1, nd + 1 + m, cmp);
sol();
sort(nd + 1, nd + 1 + m, cmpid);
for (int i = 1; i <= m; i++) {
printf("%lld\n", Ans[nd[i].id]);
}
return 0;
}

小B的询问 莫队分块的更多相关文章

  1. Bzoj 3781: 小B的询问 莫队,分块,暴力

    3781: 小B的询问 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 426  Solved: 284[Submit][Status][Discuss ...

  2. BZOJ2038 [2009国家集训队]小Z的袜子 莫队+分块

    作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从 ...

  3. BZOJ3781:小B的询问(莫队)

    Description 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L ...

  4. 【bzoj3781】小B的询问 莫队算法

    原文地址:http://www.cnblogs.com/GXZlegend/p/6803821.html 题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L ...

  5. luogu 2709 小B的询问 莫队

    题目链接 Description 小B有一个序列,包含\(N\)个\(1-K\)之间的整数.他一共有\(M\)个询问,每个询问给定一个区间\([L..R]\),求\(\sum_{i=1}^{K}c_i ...

  6. luoguP2709 小B的询问 [莫队]

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  7. 洛谷P2709 小B的询问 莫队

    小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重复次数.小 ...

  8. 【luogu1709】小B的询问 - 莫队

    题目描述 小B有一个序列,包含N个1~K之间的整数.他一共有M个询问,每个询问给定一个区间[L..R],求Sigma(c(i)^2)的值,其中i的值从1到K,其中c(i)表示数字i在[L..R]中的重 ...

  9. luogu 2709小b的询问--莫队

    https://www.luogu.org/problemnew/show/P2709 无修改的莫队几乎没有什么太高深的套路,比较模板吧,大多都是在那两个函数上动手脚. 这题询问每一种数字数量的平方和 ...

随机推荐

  1. sqlplus 设置显示格式

    使用sqlplus查询显示结果,显示很乱,下面有种方法可以让她显示的更好看些.1.设置显示的宽度:设置前可以先查看当前宽度: SQL> show linesize;linesize 100SQL ...

  2. javascript 中的JSON.stringify - 将对象和数组转换为json格式(来源于网络)

          JSON.stringify 函数 (JavaScript) 将 JavaScript 值转换为 JavaScript 对象表示法 (Json) 字符串.     JSON.stringi ...

  3. Android 数据库 OrmLite Failed to open database

    04-01 16:49:32.720: E/SQLiteLog(1894): (14) cannot open file at line 30204 of [00bb9c9ce4]04-01 16:4 ...

  4. actionbar中添加searchview并监听期伸缩/打开的方法

    首先在xml中设置actionviewclass <item android:id="@+id/m1" android:title="setting" a ...

  5. GBK、GB2312和UTF-8编码区分

    GBK包含全部中文字符, GBK的文字编码是双字节来表示的,即不论中.英文字符均使用双字节来表示,只不过为区分中文,将其最高位都定成1. 至于UTF-8编码则是用以解决国际上字符的一种多字节编码,它对 ...

  6. Ros疑问汇总

    一.机器人描述文件三个: 机器人主体body文件: gazebo属性文件: 主文件 smartcar.urdf: 二.启动文件smartcar_display.rviz.launch:启动节点和模拟器 ...

  7. cocos2d中setBlendFunc设置颜色混合方案

    CCSprite有一个ccBlendFunc类型的blendFunc_结构体成员,可以用来设置描绘时的颜色混合方案.ccBlendFunc包含了一个src和一个dst,分别表示源和目标的运算因子. 如 ...

  8. session,cookie总结

    不同的域名生成的session_id是不一样的,(就算是相同的主域,例如:www.test.com, blog.test.com 都不一样); 相同的主域,不同的二级域名,例如www和blog都是不共 ...

  9. 最短路径Dijkstar算法和Floyd算法详解(c语言版)

    博客转载自:https://blog.csdn.net/crescent__moon/article/details/16986765 先说说Dijkstra吧,这种算法只能求单源最短路径,那么什么是 ...

  10. 20、Basic Shell_for_while_grep_find

    转载:https://github.com/swcarpentry/DEPRECATED-boot-camps/blob/master/shell/shell_cheatsheet.md 1.For ...